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UNIFORM PARAMETERIZATION OF SUBANALYTIC
SETS AND DIOPHANTINE APPLICATIONS

BY RArF CLUCKERS, JoNATHAN PILA AND ALEX WILKIE

ABSTRACT. — We prove new parameterization theorems for sets definable in the structure Ryp
(i.e., for globally subanalytic sets) which are uniform for definable families of such sets. We treat
both C”-parameterization and (mild) analytic parameterization. In the former case we establish a
polynomial (in r) bound (depending only on the given family) for the number of parameterizing
functions. However, since uniformity is impossible in the latter case (as was shown by Yomdin via a
very simple family of algebraic sets), we introduce a new notion, analytic quasi-parameterization (where
many-valued complex analytic functions are used), which allows us to recover a uniform result.

We then give some diophantine applications motivated by the question as to whether the H o()
bound in the Pila-Wilkie counting theorem can be improved, at least for certain reducts of Ryy. Both
parameterization results are shown to give uniform (log H )0(1) bounds for the number of rational
points of height at most H on R,y -definable Pfaffian surfaces. The quasi-parameterization technique
produces the sharper result, but the uniform C”-parameterization theorem has the advantage of also
applying to RE," -definable families.

REsuME. — Nous démontrons de nouveaux résultats de paramétrisations d’ensembles définissables
dans R,y (aussi appelés ensembles sous-analytiques globaux), uniformément dans les familles défi-
nissables. Nous traitons les paramétrisations C” ainsi que les paramétrisations douces et analytiques.
Danslecas C”, nous obtenons une borne polyndmiale (en r, et dépendant seulement de la famille) pour
le nombre de fonctions paramétrisantes. Dans le cas de paramétrisations analytiques, comme I"unifor-
mité est impossible (démontré par Yomdin pour une famille semi-algébrique trés simple), nous intro-
duisons une nouvelle notion de paramétrisations quasi-analytiques (utilisant les fonctions analytiques
complex multi-valuées), ce qui nous permet d’obtenir des résultats uniformes. Ensuite nous donnons
des applications diophantiennes motivées par la question de savoir si la borne H o(1) dans le théo-
réme de comptage de Pila-Wilkie peut étre améliorée pour certaines réductions de la structure Ryp.
Nos deux approches de paramétrisations nous permettent d’obtenir des bornes uniformes de grandeur
(log H)°M pour le nombre de points rationels de hauteur au maximum H sur les surfaces pfaffiennes
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2 R. CLUCKERS, J. PILA AND A. WILKIE

qui sont Ryp-définissables. Les paramétrisations quasi-analytiques nous donnent des résultats plus fins,
mais les paramétrisations C” ont I’avantage de fonctionner aussi dans le cadre plus général de familles
REYV_définissables.

1. Introduction

The aim of this section is to give an informal account of the results appearing in this paper.
Precise definitions and statements are given in the next section.

So, we are concerned with parameterizations of bounded definable subsets of real
euclidean space. The definability here is with respect to some fixed (and, for the moment,
arbitrary) o-minimal expansion of the real field. By a parameterization of such a set X € R”,
we mean a finite collection of definable maps from (0, 1)” to R”, where m := dim(X), whose
ranges cover X . The fact that parameterizations always exist is an easy consequence of the
cell decomposition theorem, but the aim is to construct them with certain differentiability
conditions imposed on the parameterizing functions together with bounds on their deriva-
tives. The first result in this generality was obtained in [27] (by adapting methods of Yomdin
[33] and Gromov [13] who dealt with the semi-algebraic case), where it was shown that for
each positive integer r there exists a parameterization consisting of C” functions all of whose
derivatives (up to order r) are bounded by 1. Further, the parameterizing functions may be
found uniformly. This means that if 0 = {X; : t € T} is a definable family of m-dimen-
sional subsets of (0, 1)” (say), i.e., the relation “¢ € T and x € X;” is definable in both x
and ¢, then there exists a positive integer N, such that for each ¢t € T, at most N, functions
are required to parameterize X, and each such function is definable in ¢. (The bound N,
does, of course, also depend on the family &, but we usually suppress this in the notation.
The point is that it is independent of ¢.) Unfortunately, the methods of [27] do not give an
explicit bound for N, and it is the first aim of this paper to do so in the case that the ambient
o-minimal structure is the restricted analytic field R,, (where the bounded definable sets are
precisely the bounded subanalytic sets), or a suitable reduct of it. We prove, in this case, that
N, may be taken to be a polynomial in r (which depends only on the given family ¢{’). While
we have only diophantine applications in mind here, this result already gives a complete
answer to an open question, raised by Yomdin, coming from the study of entropy and
dynamical systems (see e.g., [33], [32], [13], [3]). In fact, even in the case that the ambient
structure is just the ordered field of real numbers (which is certainly a suitable reduct of R,,
to which our result applies), the polynomial bound appears to be new and, indeed, gives
a partial answer to a question raised in [3] (just below Remark 3.8); the essential missing
ingredient to solve this question completely is an effective form of the preparation result of
[20] in the semi-algebraic case. Our uniform C”-parameterization theorem also holds for
the expansion of R,, by all power functions (i.e., the structure usually denoted Rhy" ) and
suitable reducts (to be clarified in Section 2) of it. In fact, we obtain a pre-parameterization
result in Section 4.2 which underlies C”-parameterizations.

Next we consider mild parameterizations. Here it is more convenient to consider para-
meterizing functions with domain (—1, 1) (where m is the dimension of the set being

4¢ SERIE - TOME 53 — 2020 — Ne 1



PARAMETERIZATIONS AND DIOPHANTINE APPLICATIONS 3

parameterized) and we demand that they are C* and we put a bound on a/l the derivatives.
We shall only be concerned with functions that satisfy a so called 0-mild condition, namely
that there exists an R > 1 such that for each positive integer d, all their d’th derivatives
have a bound of order R~ - d! (which in fact forces the functions to be real analytic).
It was shown in [15] that any reduct of R,, has the 0-mild parameterization property:
every definable subset of (—1, 1)” has a parameterization by a finite set of 0-mild functions.
However, this result cannot be made uniform. For Yomdin showed in [34, Proposition 3.3]
(see also [35, page 416]) that the number of 0-mild functions required to parameterize the
set {(x1.x2) € (—1,1)? : x; - xo = t} necessarily tends to infinity as ¢ — 0. Our second
parameterization result recovers uniformity in the 0-mild setting but at the expense of,
firstly, covering larger sets than, but ones having the same dimension as, the sets in the given
family and secondly, covering not by ranges of 0-mild maps but by solutions to (a definable
family of) Weierstrass polynomials with 0-mild functions as coefficients.

In [27] the parameterization theorem is applied to show that any definable subset of (0, 1)”
(the ambient o-minimal structure being, once again, arbitrary) either contains an infinite
semi-algebraic subset or else, for all H > 1, contains at most H°() rational points whose
coordinates have denominators bounded by H. (For the purposes of this introduction we
refer to such points as H-bounded rational points.) Although this result is best possible in
general, and is so even for one dimensional subsets of (0, 1) definable in the structure Ry,
it has been conjectured that the H°® bound may be improved to (log H)°® for certain
reducts of R,, (specifically, for sets definable from restricted Pfaffian functions), and it is our
final aim in this paper to take a small step towards such a conjecture.

We first observe that the point counting theorem from [27] quoted above follows (by
induction on dimension) from the following uniform result (the main lemma of [27] on page
610). Namely, if m < nand & = {X; : t € T} is a definable family of m-dimensional
subsets of (0, 1)", and ¢ > 0, then there exists a positive integer d = d (&, n) such that for each
t € T and for all H > 1, all the H-bounded rational points of X; are contained in the union
of at most O(H?) algebraic hypersurfaces of degree at most d, where the implied constant
depends only on & and e. Now, for the structure Rby" (or any of its suitable reducts), our
uniform C”-parameterization theorem allows us to improve the bound here on the number
of hypersurfaces to O((log H)°W) (for H > e, with the implied constants depending only
on the family &¥) but, unfortunately, their degrees have this order of magnitude too. Actually,
the bound on the degrees is completely explicit, namely [(log H)™/®=™)], but as this tends to
infinity with H, the inductive argument used in [27] (Where the degree d only depended on ¢
and n) breaks down at this point. Our 0-mild (quasi-) parameterization theorem does give a
better result for (suitable reducts of) the structure R,, in that the number of hypersurfaces is
bounded by a constant (depending only on &), but the bound for their degrees is the same
as above and so, once again, the induction breaks down.

We can, however, tease out a uniform result for rational points on certain one and two
dimensional sets definable from restricted Pfaffian functions, but for the general conjecture
a completely new uniform parameterization theorem that applies to the intersection of a
definable set of constant complexity with an algebraic hypersurface of nonconstant degree
is badly needed.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



4 R. CLUCKERS, J. PILA AND A. WILKIE

NOTE. — As this paper was being finalized, the arXiv preprints [1], [2] appeared. There
is some similarity in the methods used there and the complex analytic approach here.
There seems to be no inclusion in either direction in the parameterization results nor in the
diophantine applications; the diophantine result of [2] deals with sets of arbitrary dimension
but in a smaller reduct of R,,.

2. Precise statements

2.1. C7-parameterizations

The largest expansion of the real field (that is, the expansion with the most defin-
able sets) to which our uniform C’-parameterization theorem applies is the structure
RS, ie., the expansion by all restricted analytic functions and all power functions
(0,00) > (0,00) : x = x* (for s € R). However, when it comes to applications there is
considerable advantage to be gained from working in suitable reducts of R;" for which
more effective topological and geometric information is available for the definable sets. (For
example, for sets definable from restricted Pfaffian functions one has, through the work of
Khovanskii ([17]) and Gabrielov and Vorobjov ([11]), good bounds (in terms of natural
data) on the number of their connected components.)

It turns out that for our proof here to go through, the property required of the ambient
o-minimal structure is that it should be a reduct of REs" in which a suitable version of the
Weierstrass Preparation Theorem holds for definable functions. Now, a large class of such
reducts has been identified and extensively studied by D. J. Miller in his Ph.D. thesis (and
in [20]), inspired by the results from [19] and [22] in the subanalytic case. These are based
on a language for functions in a Weierstrass system together with a certain class of power
functions. There is no need for us to go into precise definitions here-we will quote the relevant
results from [20] when needed. Suffice it to say that examples include the real ordered field
itself, Ran, REn" or, indeed, the expansion of R,, by any collection of power functions that
is closed under multiplication, inverse and composition (i.e., such that the exponents form a
subfield of R). Many more examples appear in the literature (see [8], [7] and [20]). We shall
assume, in the precise statement of the theorem below and throughout Section 4, that all
notions of definability are with respect to some such fixed reduct of Rhy"

CONVENTION 2.1.1. — We fix a reduct of Res" based on a Weierstrass system &F and a

subfield K of its field of exponents as described in [20, Definition 2.1]. As there, we denote its
language by Z({;

Note that, for the smallest possible choice of ¢# and K = Q, the %Igz—deﬁnable sets are
precisely the semi-algebraic sets. For the largest possible choice of f, and for K = R, one
has that %§ equals RE:".

DEFINITION 2.1.2. — Let r be a nonnegative integer or +o00. The C"-norm || f||cr of a
C7-function f : U C R™ — R, with U open and nonempty, is defined (in R U {400}) by

sup sup | f@ ()],

x€U |a|<r
aeN”
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PARAMETERIZATIONS AND DIOPHANTINE APPLICATIONS 5

where N is the set of nonnegative integers, and where we have used the standard multi-index
notation, namely for & = (a1, ...,a,) € N, £@ stands for 3% f/9x* (= f fora = 0),
and |a| denotes > ;- &;. By the C"-norm of a C"-map f : U C R™ — R*, with U open,
we mean the maximum of the C"-norms of the component functions of f.

THEOREM 2.1.3 (The uniform C”-parameterization theorem). — Let n, k be positive inte-
gers and m be a nonnegative integer withm < n. Let 0 = {X; :t € T} be an %g—deﬁnable

Jamily of m-dimensional subsets of (0,1)", where T is some %gy-deﬁnable subset of R¥. Then
there exist positive numbers ¢ and d, depending only on the family &, such that for each positive
integer r, and for eacht € T, there exist analytic maps

Priiz 0, )" - X;

fori =1,... ,cr?, whose CT-norms are bounded by 1 and whose ranges cover X;. Moreover,
foreachi andr, {¢,i; :t € T}isan ﬁﬁg-deﬁnable Sfamily of maps.

The proof of 2.1.3 is given in Section 4 and relies on a pre-parameterization result
(Theorem 4.3.1) which underlies C"-parameterizations for all r via power maps.

2.2. Quasi-parameterization

For the main result of this section we require our ambient o-minimal structure to be a
reduct of R,,: we do not know whether Theorem 2.2.3 below (or some version of it) holds if
power functions with irrational exponents are admitted. We shall be working with complex
valued definable functions of several complex variables where the definability here is via
the usual identification of C with R?. Naturally enough we will require the existence of a
sufficient number of definable holomorphic functions:

CONVENTION 2.2.1. — We fix a reduct of Ry with the following property. If f:U C R™ — R,
with U open, is a definable, real analytic function, then for each a € U there exists an open
V c C"witha € VNR™ C U and a definable holomorphic function f : V' — C such that for
allb e VNR™, f(b) = f(b). For the remainder of this subsection and throughout Section 5
(unless otherwise stated) definability will be with respect to this structure.

The main examples are the real field and R, itself. Others may be constructed as follows.
Let &7 be a collection of restricted (real) analytic functions closed under partial differentia-
tion and under the operation implicit in 2.2.1 (i.e., under taking the real and imaginary part
functions of the local complex extensions). Then the expansion of the real field by ¢ will
be a reduct of R,, satisfying 2.2.1. This follows fairly easily from the theorem of Gabrielov
([10]) asserting that such a reduct is model complete. (For a local description of the complex
holomorphic functions that are definable in such a structure (at least, in a neighborhood of
a generic point) see [31].)

For R > 0 we denote by A(R) the open disk in C of radius R and centered at the origin.

DEFINITION 2.2.2. — Let R > 0, K > 0 and let m be a positive integer. Then a definable
family A = {F, : t € T}, where T is a definable subset of R for some k, is called an
(R, m, K)-family if for each ¢ € T, the function F; : A(R)"™ — C is holomorphic and for all
z € A(R)™ we have |F;(z)| < K.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



6 R. CLUCKERS, J. PILA AND A. WILKIE

We shall develop a considerable amount of theory for such families in Section 5. To
mention just one result, which is perhaps of independent interest, we will show that if R > 1

and, foreacht € T,
Fi(z) = Zag) -z%

is the Taylor expansion of F; for z = (zy,...,zy) in an open neighborhood of 0 € C™
(where the summation is over all m-tuples « = (og,...,a,,) € N™), then there exists
M = M(A) € N such that |ag)| achieves its maximum value for some « with |¢| < M.
(In addition to the multi-index notation introduced in 2.1.2 we write z* for z{" - -- z;/.) The
fact that M is independent of ¢ here is crucial for all the uniformity results that follow and
leads to the following

THEOREM 2.2.3 (The quasi-parameterization theorem). — Let n and m be nonnegative
integers withm < n and let = {X; : s € S} be a definable family of subsets of [-1, 1]",
each of dimension at most m, where S is a definable subset of R¥ for some k. Then there exists
R > 1, K > 0, a positive integer d and an (R,m + 1, K)-family A = {F; : t € T} such that
each F; is a monic polynomial of degree at most d in its first variable and for all s € S, there
existst € T such that

n
Xs S{x = (x1.....x0) € [-1.1]" : 3w € [-1. 1]" such that J\ Fi(xi, w) = 0}.

i=1
The proof of 2.2.3 is given in Section 5. However, some of the ideas involved can be
illustrated by considering Yomdin’s example mentioned in Section 1. Heren = 2, m = 1,
S = (0,1)and Xy = {(x1.x2) € (=1,1)? : x; - xo = s} (foreach s € S). If we take
T = (0,1) and G,(z1,22) = z7 — zpz1 + 1 (fort € T), then for all s € S, there exists 7 € T

such that

2
X; € {x = (x1.x) € [-1.1]*: 3w € [-2,2] such that /\ G,(x;.w) = 0}.
i=1

(Just take r = s and then, for (x1, x3) € Xj, take w = x1 + x3.)

The fact that w may not lie in the required interval [—1, 1] is an annoying, but entirely
superficial, difficulty that can always be resolved by a process that we will refer to as “trans-
lation and scaling”. In this case no scaling is required: we just take our F;(zy,z2) to be
Gi(21,22) - G¢(z1,22 + 1) - G4 (21,22 — 1), so that {F; : t € T}isa (2,2,1331)-family each
member of which is a monic polynomial in z; of degree 6, and which now has the required
property exactly.

2.3. Diophantine applications

The above parameterization results may be applied to obtain results about the distribution
of rational points on definable sets.

The height of a rational number ¢ = a/b where a,b € Z with b > 0 and ged(a,b) = 11is
defined to be H(g) = max(|a|,b) and the height of a tuple ¢ = (g1,...,q9n) € Q" is
H(g) =max(H(g;),i = 1,...,n). For X C R"” we set

XQH)={xeXNQ":H(x) <H}

4¢ SERIE - TOME 53 — 2020 — N° 1



PARAMETERIZATIONS AND DIOPHANTINE APPLICATIONS 7

and define the counting function
N(X,H) = X(Q. H).

It is convenient to express the diophantine applications in the same settings as the corres-
ponding parameterization results. Thus 2.3.1 below considers a family X' C T'x(0, 1)” of sets
X, Cc (0,1)",t € T, while 2.3.2 considers a family ¥ C T x[—1, 1] of sets X; C [—1,1]",¢ €
T, in each case definable in a suitable (specified) o-minimal structure. As mentioned above,
this is a superficial issue. We assume that each fiber X; has dimension m < n.

By [x] we denote the integer part of a real number x: [x] € Z and [x] < x < [x] + 1.

THEOREM 2.3.1. — Let ¥ C T x (0, 1)" be a family of sets X;,t € T, of dimension m,
definable in Ry . Then there exist positive constants C; = C1(X),c1 = c1(X) such that,
for H>eandt € T, X;(Q, H) is contained in the union of the zero sets of at most

Ci(log H)*!
non-zero polynomials with real coefficients of degree at most
[(log H Y™/ =),
For a definable family in the smaller structure R,, we get a more precise result.

THEOREM 2.3.2. — Let ¥ C T x [—1,1]" be a family of sets X;,t € T, of dimension m,
definable in R,y. Then there exists a positive constant C, = Co(X) such that, if H > e and
t € T then X;(Q, H) is contained in the union of the zero sets of at most

&)
non-zero polynomials with real coefficients of degree at most

[(log H)™/(r=m)].

If these results could be iterated on the intersections we would be able to prove a bound
of the form (log H)°® for rational points up to height H, unless the set contained a
positive-dimension semi-algebraic subset, as discussed in §1. However, as the degrees of the
hypersurfaces increase with H, even a second iteration would require a result for such non-
definable families.

However, for certain families of Pfaffian sets of dimension 2 (see the basic definitions
below) we can carry this out using estimates due to Gabrielov and Vorbjov [11]. They have the
right form of dependencies to give a suitable result for the curves arising when the surface is
intersected with algebraic hypersurfaces of growing degree. This idea has been used in several
previous papers [4], [15], [16], [25], [26].

DEerINITION 2.3.3. — A Pfaffian chain of order r > 0 and degree « > 1 in an open domain
G C R" is a sequence of analytic functions f1, ..., f, on G satisfying differential equations

n
dfy = gij(x. fi(x)..... fj(x))dx;
i=1
for1 < j < r, where g;; € R[xi,...,Xn,y1,...,y;] are polynomials of degree not
exceeding . A function

f=PXx1,....Xn, f1,--, fr)s

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



8 R. CLUCKERS, J. PILA AND A. WILKIE

where P is a polynomial in n +r variables with real coefficients of degree not exceeding f > 1
is called a Pfaffian function of order r and degree («, 8). A Pfaffian set will mean the set of
common zeros of some finite set of Pfaffian functions.

By Rpgr we mean the expansion of the real ordered field R by all Pfaffian functions
f:R" - R,n =1,2,... This is an o-minimal structure [30]. The smaller o-minimal struc-
ture Ryesprafr is the expansion of R by all functions of the form f'|[o,1j» where f : G — Ris
a Pfaffian function and [0, 1]* C G.

The following notion of a “Pfaffian surface” is much more restrictive than a two-
dimensional set definable in Rpg,g.

DEFINITION 2.3.4. — By a Pfaffian surface we will mean the union of the graphs in R3 of
finitely many Pfaffian functions of two variables with a common Pfaffian chain of order and
degree (r, ), defined on a “simple” domain G in the sense of [11]. Namely, a domain of the
form R?, (—1,1)2, (0, 00)? or {(u,v) : u? + v? < 1}. We take the complexity of the surface
to be the triple (r, «, 8), where B is the maximum of the degrees of the Pfaffian functions
defining the surface.

DEFINITION 2.3.5. — Let X C R”". The algebraic part of X, denoted X?!2 is the union of
all connected positive dimensional semi-algebraic subsets of X . The complement X — X 21 is
called the transcendental part of X and denoted Xans,

By combining 2.1.3 with the methods of [25], [26] we get a uniform result for a family
of Pfaffian surfaces definable in Rfy". For an individual surface definable in the struc-
ture Ryesprar Such a bound is due to Jones-Thomas [16]. Perhaps a combination of the
methods could give uniformity for Rby" -definable families of restricted-Pfaffian-definable

sets of dimension 2.

PROPOSITION 2.3.6. — Let r be a nonnegative integer and o, 8 positive integers. Let
X C T x(0,1)3 be a family of surfaces Xs,t € T, definable in Rey" such that each fiber X; is
the intersection of (0, 1)* with a Pfaffian surface of complexity (at most) (r,a, B). Then there
exist C3(&X0), c3(X) such that, for H > e andt € T,

N(X[™" H) < Cs(log H)®.

When the family is definable in R,,, we can prove a more precise uniform result in which
the exponent depends only on the complexity of the Pfaffian surfaces.

PRrROPOSITION 2.3.7. — Let r be a nonnegative integer and o, positive integers. Let
X C T x [-1,1]3 be a family of surfaces X;,t € T, definable in R,y such that each fiber X,
is the intersection of [—1, 1]> with a Pfaffian surface of complexity (at most) (r,c, B). Then
there exist C4(X) and c4(r, o, B)) such that, for H > e andt € T,

N(X[™™ H) < Cq(log H) .

The proofs of Theorems 2.3.1 and 2.3.2 and Propositions 2.3.6 and 2.3.7, assuming the
parameterization results, are given in Section 3.
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PARAMETERIZATIONS AND DIOPHANTINE APPLICATIONS 9

3. Proofs of diophantine applications

3.1. Some preliminaries for 2.3.1 and 2.3.2
For a positive integer k and nonnegative integer § we let
Ar®) = {p = (1) €N 1l = o+ e = ),
Ak(®) = (i = (o) €N 1] = o+ g < 8,
L) = Ak(8),  Di(8) = Ar(d).
We recall that N denotes the set of nonnegative integers.
Let X = X; be a fiber of our definable family. We will adapt the methods of [26], in which
we explore X(Q, H) with hypersurfaces of degree
d = [(log H)™/("=m],

This leads us to consider D, (d) x D,(d) determinants A whose entries are the monomials
of degree d (indexed by A, (d)) evaluated at D, (d) points of X. These points lie on some
algebraic hypersurface of degree d if and only if A = 0.

Given some suitable parameterization of X by functions of m variables, we estimate the
above determinant by a Taylor expansion of the monomial functions to a suitable order b
(remainder term order b + 1). The order of the Taylor expansion will match the size of the
matrix, and so we define b(m, n, d) as the unique integer b with

Dp(b) < Dy(d) < Di(b +1).
It is an elementary computation, carried out in [26], that

m!

1/m
b=b(m,n,d)= (_') d"m1 + o(1)),
n!
where the o(1) means, here and below, as d — oo with m, n fixed. In particular,

b(m,n,d)+1§2(m' ) ,
n

provided d > dy(m, n) and hence provided H > Hy(m,n).
The fact that b is rather larger than d is crucial to the estimates.

3.2. Proof of 2.3.1

In this and subsequent subsections, C, ¢, ... will denote constants depending on ¢, while
E denotes a constant depending only on m, n, and in both cases they may differ at each
occurrence.

Let X = X, be a fiber of . We assume for now that H > Hy(m, n) for some Hqy(m,n)
to be specified in the course of the proof.

According to Theorem 2.1.3, we can parameterize X by functions

¢ :(0,1)" — (0,1)"

such that all partial derivatives of all component functions up to degree b + 1 are bounded
in absolute value by 1, and we can cover X using at most

Ch°
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such functions, where C, ¢ depend on X

Let us fix one such function ¢ = (¢1,...,¢,), where ¢; : (0,1)" — (0, 1). From now
on we deal only with ¢. Our bounds will depend only on bounds for the derivatives of the
coordinate functions of ¢ up to order b + 1. Since b depends on n,m, d, from now on, all
constants will depend only on m, n, d.

We consider a D, (d) x D, (d) determinant of the form
A = det ((x(”))“)

with v=1,...,D,(d) indexing rows and u € Az(n) indexing columns, where
x = W . x) € X(Q.H) are points in the image of ¢, say x® = $(z)
where z(") € (0, 1)™, later to be taken to be in a small disk in (0, 1), and x* = I1 xf“.

As each x;v) is a rational number with denominator < H, we find that there is a positive
integer K such that KA € Z and

(%) K < H"4Pn@),

If we write
n

qDM:l_[(piMi

i=1

for the corresponding monomial function on the ¢; then we have
A = det (@M(z@))) .

We now assume that the z® all lie in a small disk of radius r centered at some z(® and
expand the @, in Taylor polynomials to order b (with remainder term of order b + 1).
Fora € Ar(b), B € Ax(b + 1) we write

%P, (z@) a B o, (z) B
« _ K ® _ (0 B _ w ) _ (0
v = ol (Z z ) s Qv,;/, - /3‘ (é‘u z ) s

™ (on the line joining z©® to z®), and with

with a suitable intermediate point ¢
al = ]_[f=1 a;!, so that the Taylor polynomial is
Q= D Nt DL Oy
aeAy (b) BEAm(b+1)
and we have
A=det| > 0%,
a€A,, (b+1)

We expand the determinant as in [24] (see also [28], eqn (2), p48), using column linearity
to get

A= ZT: Ac A =det(0)

with the summation over {t : A,(d) = Ap(b + 1)}.
Now if, for some k € {1,...,b}, we have

(k) T Am(k) > Lin(k),
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PARAMETERIZATIONS AND DIOPHANTINE APPLICATIONS 11

then A; = 0 as the corresponding columns are dependent (the space of homogeneous forms
in (z) — z©) of degree k has rank L,,(k)). Thus all surviving terms have a high number of
factors of the form (z®) — z®) and/or (¢ — z(®). We quantify this.

The function ®,, is a product of |u| < d functions ¢;, which have suitably bounded
derivatives. Let us consider more generally a function

4
o=]]é6.
i=1

where 6; have |0 (z)| < 1 for all [a| < b + 1. Then, for « with |a| < b + 1, we have

8
@ =3 Ch@®.....a® [T«

o i=1
with the summation over ™ + ... + «®) = «, where
) ®y _ T o;!
Ch(oe e, O ) = 1_[ W .
j= et

Since |6 (2)| < 1 for all |a| < b + 1 we have

oq! gy !
[CIQUE IS Y LI RVRURVE S . Lu—
Z agl)!...ags)! Z a1 o

a(li) Ot,(f,)
each summation subject to ) ; a](.i ) = a; hence
|®(a)(2)| < §o...8em — slel
Therefore al
o
05,1 < YT — syt < g i
a!

and for a T which avoids the condition (x%) above (under which A; = 0) all terms in its
expansion are bounded above in size by
eman (d) rB

where

b b
B=B(m.n.d) =Y Lnkk+ (Dn(d) - ZL,,,(K)) (b +1).

k=0 k=0

Note that (Dn (d)— 22:0 Ly, (K)) > 0 by our choice of b. We have the asymptotic expres-
sion (see [26])

1 m! (m+1)/m

The number of terms from all the A, is D, (b + 1)@ D, (d)! and we conclude that
|A| < Dp(b + )P D D, (d)1emdPn(d) B
Thus we have an integer KA with

K|A| < H"Pn@D p(h 4+ 1)Pn@) p, (d)1emdDn(d) B

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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and if K|A| > 1 then so is its Bth root. Now with our choice of d we find that

nan(d) d"! —(n—m)/m
B = Edn+n/m (14+o0(1)) =Ed (1 +o0(1))
(where E, according to the convention described above, is a constant depending only onn, m,

and possibly different in each occurence) thus

Hnan(d)/B S E,

since d > 0.5(log H)™/ =™ say, for H sufficiently large in terms of n, m.
The remaining terms

1/B
(Db + P @D, (d)temdPn @)
are also bounded as d — oo (see [26]) and so
(KIADYE < Er,

where E is a constant depending only on n, m, provided H > Hy(n, m) is sufficiently large.
If rE < 1 then all points of X(Q, H) parameterized by ¢ from this disk lie on one algebraic
hypersurface of degree d, because the rank of the rectangular matrix formed by evaluating
all monomials of degree < d at all such points is less than D, (d).

Since (0, 1) may be covered by some E’ such disks, and there are C(b+1)¢ < C’(log H)¢
maps ¢ which cover X, the required conclusion follows for H > Hy(m,n). However for
H < Hy the number of points is bounded depending only on Hg, m, n. O

REMARK. — Note that the statements in [26, 3.2 and 3.3] tacitly assume that the mildness
parameter A satisfies A > 1, which is used in the last line of page 501 of [26].

3.3. Setup for 2.3.2

This and the subsequent two subsections are devoted to the proof of Theorem 2.3.2. After
some preliminary results, the proof itself is in 3.5.

We have a family of sets X, C [—1, 1]”, of dimension m, definable in R,,. By 2.2.3 we may
assume this family is contained in a family given by a quasi-parameterization, which we may
take to be of the following form. There exist a positive integer N (which is the degree d of
the polynomial dependence of the functions F; in their first variable in 2.2.3) and analytic
functions

hij:[-L,1"T" >R, i=1,...,n, j=0,...,N—1,
converging on a disk of radius ro > 1 in the first m variables. The remaining variables
for [—1, 1]7 are for the parameters of the quasi-parameterization. We have functions

u;j . T — [-1,1]"
(which need not be definable) such that, setting u () = (u1(¢),...,uy(t)), forallt € T and
x = (x1,...,x) € X, there exists w = (wy,...,wy) € [—1, 1] such that
XV = hiy—1 (i u(@)xN 7 4+ o (wi,u(t)).

The functions /;; record the polynomial dependence of the functions in 2.2.3 on their first
variable; according to 2.2.3 we can in fact assume that the /; ; are independent of i, but we
don’t need this.
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We keep the previous convention regarding constants.

3.4. Preliminary estimates

Foreachi,settingx = x; and h; = h; j and suppressing the subscripti and the arguments
of the /;, we have a relation

XN = hN_lxN_l + ...+ ho.

By means of this relation, all powers x”, v € N may be expressed as suitable linear combina-
tions of 1, x,...,x¥~1, namely

b

X = qv,jx’
0

J
with coefficients g, ; € Z[ho,...,hy—1]. In particular gy ; = h;. We need an estimate for
the degree and integer coefficients of the g, ;.

Let H be the N x N matrix of analytic functions

000...0 ho
100...0 hy
010...0 hy

000...1hy_

Then H acts as a linear transformation on the vector space with (ordered) basis

{1, x,... ,xN_l} and the g, ; are the entries of the column vector
0
Hv
0

Inductively, the entry Hl}’j is in Z[hy, ..., hny—1] of degree max(0, j — N + v) and the sum
of at most max(2"~'*/=V 1) pure (i.e., with coefficient 1) monomials. We have proved the
following.

LeEMMA 3.4.1. — Forallv e Nand j =0,...,N —1, g, ; is a sum of at most 2" monomials
of degree at most v in the h;.

The above is for one variable. We now return to the multivariate setting with
x = (x1,...,x,). For v € N we then have

N-1
x; = Z Giv,jx’,
Jj=0
where g; ., ; is the previously labeled g, ; for the relevant h; = h; ;.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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If v € N” we have

n n N-—1
v Vi j A
W=l =TT 20 dix = 3 auax™
i=1 i=1j=0 reM

n
where gy 2 = [ ;21 Givia; -

We now want to bound the derivatives (in the w variables) of the ¢, . For
o= (aq,...,0,) € N we set @ = max(e;).

LeEmMMA 3.4.2. — For suitable constants C, R and all « € N™ we have

1) (w, )|
VAT < 2|U|(a + 1)(|V|—1)mc\V\R|OK\.
ol -

Proof. For derivatives (in the w-variables) of the /; ; we have a bound of the form

(@)
|hi,j (w, u)| <C R|0¢|
a! - '
where @ € N _valid for every i, j, by Cauchy’s theorem, since they are analytic on some disk
of radius ry > 1.

We have that ¢;,, ; is a sum of at most 2" monomials in the /; ;, each of degree at most v;.
Therefore g, is a sum of at most 2" monomials each of degree |v| in the & i,j- Consider one
such monomial

L

g=1[]¢n

h=1
where each ¢y, € {h; j,:i =1,...,n,j =0,...,N —1}and £ < |v|. As before

¢
o
g =03% ...y = > Ch@®.....a®) T ¢n.
et ta® =g h=1
Thus
L g
0 " di _ vl plal
o = Z 1_[ o™ =CUR Z L
aD+. +a®=qh=1 aD+. +a®=q

The number of summands is at most (o + 1){VI=D7, O

COROLLARY 3.4.3. — For a € N™ we have

14%%) (. u)|
v,A : > < 2|v|(|a| + 1)|v|mC|V\R|0‘“
[0
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3.5. Proof of Theorem 2.3.2

Welet X = X, be a fiber of . We will explore X(Q, H) with real algebraic hypersurfaces
of degree
d = [(log H)"/"=™)],

and again consider D, (d) x D,(d) determinats
A = det ((x(v))”) -0,

where ;1 € A,(d) indexes monomials and x®, v = 1,..., D,(d) are points of X.

For each x) there is some w) such that the quasi-parmeterization conditions hold, i.e.,
“x®™ is parameterized by the point w™”. Later we will assume that all the w®") are in the
disk of radius r entered at some w®.

By our assumptions (see () above), there is a positive integer K < H"4Pn(4) gych that

KA e Z.

Nowlet M ={A e N":X; < N,i =1,...,n}. Thenif x € X we have
=" xrgua(w. ()
AEM
for some w € [—1, 1] where
n
q,LL,A = H‘]ui,)l,»-

i=1

There is a unique b = b(m, n,d, N) such that

N"Dy(b) < Dp(d) < N" D (b + 1).

Since m < n there are fewer monomials in m variables than in n variables, and so if d suitably
large in terms of N, n then b is somewhat larger than d. Set

b b
Bn,n,d,N) = 3" N"Lu(B)B + (Da(d) = N" 3" Ln(B)) (b + 1).
B=0 B=0
Since b is somewhat larger than d, we will have that B is somewhat larger than nd D, (d) (as
d — 00), as will be crucial.

Now we assume that the w are all in the disk of radius r entered at some w(®). We expand
each ¢ = g1 in a Taylor polynomial with remainder term of order b + 1. For o € Ag(b),
B € Ap(b + 1) we write

ora — qp.a (w(o)) <w(v) _ w(o))“ o+ — 0P gy (w(o)) (;—(v) _ w(o)>ﬂ
Vb a! ekl B! A8

for some suitable intermediate point Ei”l)g. Then we have

A=det( Y 0h%).
(A,0)

with the summation over (A, @) € {0,..., N — 1} x Ap(b + 1).
We expand the determinant as previously in terms of maps

T:A,(d)—>{0,....N—=1}"xApg(b+ 1)
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giving
A=A Ac=det(0f%),
T

with the summation over t as above.
Now if for some A € M, k with 0 < k < b we have
T ({4 x Am(6) > Lin (k)

then A, = 0 because the corresponding columns are dependent (the factors (x(”)* are
constant on the rows in those columns).

Since there are N” possibilities for A, we have that the total number of columns from which
an expansion term of degree k may be drawn for a surviving term is N L, (k).

We now assume that rR < 1. Then every surviving term is estimated by

[(n(b + 1)mc)d]Dn(d) (VR)B/
for some B’ > B = B(m,n,d, N), and since rR < 1 every term is estimated by the above
with B’ = B.
The total number of terms, assuming no cancelation, is
Dy(d)! (N" D (b + 1)@
Thus we have an integer KA with
K|A| < H™Pn@ D (@) (N" Db + 1)P"D [(n(b + 1)"C)* ]° (R)®.

And if K|A| > 1 then so is its Bth root.
Now we have (see [26])

= —— (1 +o(1)),

(m—1)!

Lm(d)=<m_l+d) dm-1

m—1

where here and below o(1) means as d — oo for fixed m,n, N. Thus likewise

m

d
Dpm(d) = Lin+1(d) = W(l + o(1)).

We find that

m!d"
n!N”"
for d — oo with n,m, N fixed. Thus (by replacing the sum 2137:0 L,,(8)8 by an integral)

B(m,n,N,d) = E(m,n, N)d""+tD/m(1 4 o(1)),

1/m
b(n,m,N,d) = ( ) (1+o(1))

where E is a suitable combinatorial expression.
With our choice of d we have as before that H"4P»(d)/B < E is bounded depending only
on n,m (once H is sufficiently large in terms of n, m). We also have

(D,,(d)!(N”Dm(b + 1))Dn<d>)1/B = 1+o0(1)

as d — o0, so is bounded by some E.
Finally, we have that
dD E

? = qdn/m—1 (1 + 0(1)) = qn/m-1’°
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(with a different E) while similarly

bD

Therefore
|KA|YB < EC Rr
and all the points of X(Q, H) in the image of the disk lie on one hypersurface of degree at
most d provided
r<(CER™.

The box [—1, 1] may be covered by

C' = (c(n)CER+1)"

such disks, where ¢(n) is the maximum side of a cube inscribed in a unit n-sphere. This gives
the desired conclusion for H > Hy(m,n, N) and for smaller H it follows as the number of
such rational points is bounded. O

3.6. Proof of 2.3.6 and 2.3.7

In the case of 2.3.6, by Theorem 2.3.1, X,(Q, H) is contained in the intersection of X,
with at most C; () (log H)¢1 () hypersurfaces of degree d = [(log H)™ ~™)], while in the
case of 2.3.7, by Theorem 2.3.2, X,(Q, H) is contained in the intersection of X; with at most
C» (&) hypersurfaces of degree d = [(log H)™/(*—™)].

If any such intersection has dimension 2, then the Pfaffian functions parameterizing the
surface X, identically satisfy some algebraic relation. Then the surface X, is algebraic, and
X rans is empty.

Thus we may assume that all the intersections have dimension at most 1. We will treat
these following the method in [26] by dividing the intersections into graphs of functions with
suitable properties, and estimating the rational points on any such graphs which are not semi-
algebraic using the Gabrielov-Vorobjov estimates.

Suppose that the fiber X; is the intersection of [—1, 1]* with the Pfaffian surface defined
by the Pfaffian functions

xX,y,z:G—->R
of complexity (at most) (r, «, 8). Write (p, g) for the variables in G. Suppose that the poly-
nomial F(x,y,z) of degree at most d defines the hypersurface V = Vp.

The intersection X; N V is the image of the one-dimensional subset W C G defined by

¢(p.q) = F(x(p.q9). y(p.q).2(p.q)) = 0.
It is thus the zero-set of a Pfaffian function of complexity (r,«,dp). The singular set
Ws C W is defined by ¢ = ¢, = ¢, = 0, the zero-set Pfaffian functions of complexity
(rya,a +dp —1) (see[11, 2.5]).

At a point of W — W, W is locally the graph of a real-analytic function parameterized
by pif ¢, # 0, or g if ¢, # 0.

Proceeding as in [26], we decompose VF into “good” curves, and points. Here a “good”
curve is a connected subset whose projection into each coordinate plane of R3 is a “good”
graph with respect to one or other of the axes; namely, the graph of a function ¥ which is
real analytic on an interval, has slope of absolute value at most 1 at every point, and such
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that the derivative of ¢ of each order 1, ..., [log H] is either non-vanishing in the interior of
the interval or identically zero.

Using the topological estimates of Gabrielov-Vorobjov [11, 3.3], Zell [36], and estimates
for the complexities of the various Pfaffian functions involved as in [26], one shows that
VF decomposes into a union of at most

Cs(r, o, )d e

points and “good” curves Y. If such a “good” curve is semi-algebraic, then so are its
projections to each coordinate plane, and also conversely. On a non-algebraic plane “good”
graph Y, one has

N(Y.H) < C7(r, e, B)(d log H)Csr*:P)

as in [26], using [25] and estimates for Pfaffian complexity. Combining the last two estimates
with those in the first paragraph of the proof gives the required conclusions. O

4. Proof of the C”-parameterization theorem

In this section we prove Theorem 2.1.3, in a self-contained way except for Miller’s prepa-
ration result [20, Main Theorem]. We also show a so-called pre-parameterization result for
definable sets in Rby ", used to generate C”-parameterizations with the required number of
maps essentially by composing with power maps (see Theorem 4.3.1 and how it is used to
prove Theorem 2.1.3). In Theorem 4.3.1, there is at first sight no family version or parameter
dependence, but, at second sight one sees that it is implicitly built in via a triangular property
of the maps involved.

In Section 4.1 we give some results about derivatives of compositions, related to mild
functions and Gevrey functions, and we introduce the notion of weakly mild functions (see
Definition 4.1.2). In Section 4.2 we define a-b-m functions, and relate them with weakly
mild functions. In Section 4.3 we state the pre-parameterization result and use it to prove
Theorem 2.1.3. In Section 4.4 we prove our pre-parameterization result using a preparation
result from [20].

4.1. Compositions

We first equip the notion of mild functions from [26] with an order. Next, we introduce
the related notion of weakly mild functions (see Definition 4.1.2). These notions are variants
of the notion of Gevrey functions [12].

DEerINITION 4.1.1. — Let A > 0 and C > 0 be real, and let r > 0 be either an integer
or +o00. A function f : U C (0,1)" — [—1,1] with U open is called (A4, C)-mild up to
order r if it is C” and for all « € N with |¢| < r and all x € U one has

£ @) < at(A]e|),
where ! = []/; ;! and || = > °/*, o; asusual. Callamap f : U C (0,1)" — [-1,1]"

(A, C)-mild up to order r if all of its component functions are.
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DEFINITION 4.1.2 (Weakly mild functions). — Let A > 0 and C > O bereal,and r > 0
be either an integer or +o00. A function f : U C (0,1)™ — [—1, 1] with U open is called
weakly (A, C)-mild up to order r if it is C” and for all « € N” with |¢| < r and all x € U
one has C

al(Ale|™)™

|/ @ ()] = e

where x* stands for ]_[;"=1 x}xj .Callamap f : U C (0,1)™ — [—1, 1]" weakly (A4, C)-mild
up to order r if all of its component functions are.

)

We say mild (resp. weakly mild) for (A4, C)-mild (resp. weakly (A4, C)-mild) up to
order +oo for some A > 0 and some C > 0. By the theory of Gevrey functions [12], it
is known that a composition of mild functions is mild. Here we study some related results
about compositions, with proofs based on Faa di Bruno’s formula. (We do no effort to
control the bounds beyond what we need.) The next lemma is obvious by the chain rule for
derivation.

LEmMA 4.1.3. — Let r > 0 be an integer and let
f:UcCO D" —[-1,1]
be (A, C)-mild up to order r. Then, for any & € (0, 1)™, the function
V= [-1,1]:x— f(&+x/ArcTh

has C"-norm bounded by 1, where V.. C (0,1)™ is the open set consisting of x such that
E4x/ArCT = (&1 + x1/ArCT g 4 X /Ar€ T lies in U.

Theorem 2.1 of [5]is a multi-variate form of Faa di Bruno’s formula for iterated derivatives
of compositions, which we now recall.

ProPOSITION 4.1.4 ([5], Theorem 2.1). — Let m > 1 and d > 1 be integers. Consider a
compositionh = fog withg :U CR? -V CR™, f:V — RandU and V open. Let
v € N? be a nonzero multi-index. Write |v| = n, and suppose that f and g are C". Then

AR

is equal to the sum over (A,s,k,t) € I of the terms

S
N7
@.1) avsicaf P T (€4
ji=1
with
vl
(42) Ay,s.kl =

[T5=; (ki (L ki1

where 0° = 1, h™ and g) are evaluated at u € U and f™ at g(u), and where I consists
of (A,s, k., &) withA e N", 1 <s <n kj e N" {; ¢ Nd,j =1,...,5,0 < |A| < mn,
0<|kjl =n, 0<|{]=<nt; <y,

N N
(4.3) Y ki=2x and Y |k;lt; =v.
j=1 j=1
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Here, £; < {jy1 for j < s means that either |{;| < |{;41], or, |£;| = ;41| and £; comes
lexicographically before £j . (For j = s, £; < £j41 is no condition.) Moreover, there exist
A > 0and C > 0, depending only on m and d, such that

(44) >y < (An6)".

(A,s,k, )€l
Proof. — We only have to prove (4.4), since the other part is literally Theorem 2.1 of [5].
But (4.4) follows from

|
v n

— L <yl<
Ay,s.k Al H;:l kl'(fj')lkjl <vl=<n
and
H#H] < (n + 1)1+m+mn+nd
where the latter bound is obtained by letting the s, A;, k;; and £;, fori = 1,...,m,
j=1,....,n,and r = 1,...,d run independently from 0 to n when estimating the number
of elements of /. O

The main purpose of our notion of weakly mild functions is that composition with rth
power maps makes them mild up to order r, as follows.

ProrosiTION 4.1.5 (Composition with power maps). — Let A > 0 and C > 0 be real
numbers and let m > 0 be an integer. Let f : V — [—1,1] be a function on some open
V C (0,1)™. Assume for each B € N™ with |B| < 1 that f®) is weakly (A, C)-mild up to
order +o00. Then, there is (A’, C'), depending only on m, A and C, such that for any integers
r > 0and L; > r, the composition h = f o g of [ with

g x> xki= (x{“,...,x,’;l’")

on the open U C (0, 1)™ consisting of x with x* € V, is (MA', C")-mild up to order r, with
M = max; L;.

Proof. — By Proposition 4.1.4 with d = m, we only have to estimate

Ji2 ﬁ (g(lj))kj
j=1

for v with 1 < |v| < r and (4, s, k,£) as in Proposition 4.1.4. Fix v with 1 < |v| < r and
write |v| = n. If n = 1 the statement follows from the conditions on f® for g with || < 1.
So let us suppose n > 1. Fix s with 1 <s <n and A € N” with |A| < n. Fix x in U. Choose
A and B in N” with A’ + 8 = A and |B| = 1. (Near the end we will optimize the choice of §,
depending on x.) By the weak (A4, C)-mildness of f®), we have
, MIA|V|CHW
FREO = 1D b)) = =—T5——,
where
LA = (L)
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We further estimate

s

j=1 =1

where k; and £; are as in (4.3) and where
(L =€)k = ((Li = £ji)kji)i-
By (4.3) it follows that

1‘[;=1 MK (L—E)k;
L

— MZi=1 k| =LA +355 _  (L—))k;
< MnxLﬁ—Z;=l ljkj ,

where LB = (L;B;); and similarly £;k; = ({;;kj;);. Since this last inequality holds for any
choice of § with || = 1 (and the corresponding A'), let us choose g with 8;, = 1 where
i1 is such that x;, = min; x;, where the minimum is over i with A; > 0. Now one has
| Z;=1 Likj| <nby@4.3)and |LB| = L;, > r > n and thus

XLB=Xj=1 Lik; <.

Putting together we find
N
FPTT )] < A ¥ M < viman€y,
j=1

which finishes the proof. O

4.2. a-b-m functions

We introduce the notions of bounded-monomial functions and of a-b-m functions in
Definition 4.2.1, resp. 4.2.2. Our motivation for the notion of a-b-m functions is threefold:
Firstly, a-b-m functions behave well in the sense that they are weakly mild whenever valued
in [—1, 1] (see Proposition 4.2.3), and even more holds (see Corollary 4.2.4). Secondly, even
better so than weakly mild functions, a-b-m functions can be rendered mild up to order r
by composing with power maps, see Proposition 4.2.6 (where the occurring roots behave
better for a-b-m functions than for weakly mild ones). Thirdly, using a preparation result
from Miller [20], we can rather easily obtain parameterizations with a-b-m maps. Some more
work is needed to make the parameterizations better (essentially with some extra control on
the first partial derivatives as in Theorem 4.3.1 (4)), so that they can be combined with the
power maps Result 4.2.6.

DEFINITION 4.2.1 (bounded-monomial functions). — Let U be a subset of (0, 1)™.
A function b : U — R with bounded range is called bounded-monomial if either b is
identically zero, or, b is of the form

m
b(x) = x" = l_[xf”
i=1
for some u; in R. A map U — R” is called bounded-monomial if all of its component
functions are.
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DEFINITION 4.2.2 (a-b-m functions). — Let U be a subset of (0, 1)™. A function f:U — R
is called a-b-m, in full analytic-bounded-monomial, if it is of the form

f(x) = bj(x)F(b1(x), ..., bs(x))

for some bounded-monomial map » : U — R* for some s and for some nonvanishing
analytic function F : V — R, where V is an open neighborhood of b(U), the topological
closure of h(U) in R®, and where j lies in {1,...,s}. We call the map » an associated
bounded-monomial map of f.

Finally, callamap f : U — R” a-b-m, with associated bounded-monomial map b, if
all its component functions are (namely, each f; is a-b-m, and, b is an associated bounded-
monomial map for each f;).

ProrosiTioN 4.2.3. — Let h : U C (0,1)™ — R be an a-b-m function. Suppose that U is
open and that h(U) C [—1,1]. Then the function h is weakly (A, C)-mild up to order +oo for
some A > 0 and some C > 0.

Proof. — Any function F : V — [—1,1] on an open V in (0, 1)" such that F is analytic
on some open neighborhood of V (the topological closure of V in R”) is (Ag, 0)-mild up
to order +oo for some Ag > 0, see e.g., [12]. Also, for any real S > 1 and any bounded-
monomial function b : U C (0,1)” — (0,S5) : x — x* with U open in (0, 1)™, the
function b/S is weakly (A1, Cy)-mild up to order +oo for some A; > 0 and C; > 0. One
may for example take A; = 1! witht = max(2,|u1],...,|um|) and C; = 0. The lemma
now follows from the fact that a composition f o g is automatically weakly (A”, C")-mild
up to order r, whenever f : V — Ris (4, C)-mild up to order r and g : U — V is weakly
(A’, C")-mild up to order r, with open sets U C (0, 1)¢ and V C (0, 1), and where moreover
A" and C” depend only on A, A, C,C’,m,d. This fact is easy to see as follows. As in the
beginning of the proof for Proposition 4.1.5, by Proposition 4.1.4 we only have to estimate
a single term of the form

F® li[ (gw,-))kj 7
j=1

for (A, s,k,£) as in Proposition 4.1.4 and v with |v| < r. By the (4, C)-mildness of f up to
order r, and assuming A > 1, we have

|f P = AARDH < v1(an©)™.
By the weak (A’, C’)-mildness of g up to order r we have

s S (A €Y HAS]
“,) kj gj!(A |€]| )/
l_[ (/)" = 1_[ xbilk;l ’

j=1 j=1

where k; and {; are as in Proposition 4.1.4. Now by (4.3) of Proposition 4.1.4, and assuming
A’ > 1, one has

[ (@ oy | < |RnEOZ U] _otidnyr
Fi g - x2j Lilkjl - XV '
Putting together we find A” and C” as desired. O
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The a-b-m functions with an associated bounded-monomial map b such that moreover
b has bounded C!-norm have particularly nice properties as illustrated by the next two
results.

COROLLARY 4.24. — Let f : U C (0,1)™ — R be an a-b-m function with an associated
bounded-monomial map b such that b has bounded C'-norm. Then, for each j = 1,...,m, the
Sfunction 0f /0x; is a finite sum of a-b-m functions on U. Hence, there is ¢ > 0 such that the
Sfunctions ef and €0f/0x; are weakly (A, C)-mild up to order +oo for some A > 0 and some
C >0

Proof. — The first statement follows from the definition of a-b-m functions, the chain rule
for derivation, and since the C!-norm of b is bounded. In detail, write f = bj, F(b) as in
Definition 4.2.2 where themap b : U — R*® has bounded C !-norm and j, € {1,...,s}. Then

.
3)(]'
equals the sum of
db; dF (b) dby
_8xj; F(b) and the b-""a—bga_x,- fort =1,...,s.

Clearly (0b;,/0x;)F(b) is a-b-m. For the other terms, one takes real S such that
[(0F/0bg)(b)] + 1 < S on U, and, one rewrites 0F /dby(b) as the sum of S + dF/dby(b)
with —S. Plugging this in gives b, (0F/dby(b)(0by/0dx;) as a sum of two terms which are
both a-b-m. The final part follows easily from Proposition 4.2.3. O

Similarly to Proposition 4.1.5, cylindrical sets and their walls are rendered mild up to
order r after suitable composition with power maps, when the initial walls are nice enough,
see the following definitions and Proposition 4.2.6. Here, a-b-m functions show their essen-
tial use.

DEFINITION 4.2.5 (Cylindrical sets and their walls). — A subset C C R” is called a cylin-
drical set, if

n
C={xeR"| /\ ai(x<i) Oip x; Oz Bi(x<)}
i=1
for some continuous functions «; and 8; with o; < B;, x<; = (x1,...,Xi—1), and with [J;;
either =, <, or no condition, and with [J;, either < or no condition, with the conventions
that [J;, is no condition if [J;; is equality. If (J;; is = or < then we call o; a wall of C. Likewise,
if (0;5 is < then we also call §; a wall of C.

PrOPOSITION 4.2.6. — Let U C (0,1)™ be a cylindrical set which is moreover open
in (0, 1)™. Suppose for each wall @ of U that «a is a-b-m with an associated bounded-monomial
map b such that moreover b has bounded C'-norm. For any integer r > 0, write i, for the map
sending x € (0,1)™ to

Yr(x) = (x{m , xgm_l e X)),
and write U, for ;7' (U). Then there exist A > 0 and C > 0, depending only on U, such that
U, is an open cylindrical set whose walls are (r'™ A, C)-mild up to order r for each r > 0.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



24 R. CLUCKERS, J. PILA AND A. WILKIE

Proof. — Let o be a wall of U, say, bounding the i-th variable from below. Then the
corresponding wall «, of U, (bounding the i-th variable from below) satisfies

m—i+1 — —i
(4.5) @ (x<i) =" \/a(X{'",XE'" LT,

We show the existence of A’ > 0 and C’ > 0 such that «, is (™ A’, C’)-mild up to order r,
where A’ and C’ depend onlyon U. If @ > g on U for some ¢ > 0, then the existence of A’ and
C' as desired follows easily from (4.5), Proposition 4.1.5 and the chain rule. If « is identically
zero then so is &, and A" and C’ exist clearly. Since any a-b-m function f is the product of
a bounded-monomial function b; with an a-b-m function F(b) with |F(b)| > & for some
¢ > 0, and since products behave well for mildness up to order r, it is enough to show the
existence of A’ > 0 and C’ > 0 in the case that « is itself bounded-monomial. That is, we
may suppose that there is p in R” with

(4.6) a(z<i) = z*

for z € U. For k > 1 let V} be the set consisting of y € (0, 1)™ with (y{‘, - ,yfn) in U and
let iy be the function

hi Vi > Ry yH
We claim that there exist constants S > 0, Ag > 0 and Cy > 0, depending only on U and u
(and not on k), such that for each § € N with |8| < 1 the function

||
S

is weakly (4o, Co)-mild. By (4.5) and (4.6), «, is the composition of /i with x +— xT for
some k > 1 and some L in N” with r < L; < r™~! for each i. Thus, the existence of A’ and
C’ now follows from the claim and Proposition 4.1.5. There is only left to prove the claim to
finish the proof. Since both « and & are monomials with exponent tuple u (but with different
domain), we find by differentiating

4.7) P )] = e (A, k, w)la® (2)]1/*

with z = (y¥, ..., y¥), and, with
(4.8) Ak, ) < AN(Ap| A€

for some A; > 0 and C; > 0 depending only on U and p. The claim now follows from the
bounds on |« (z)| for z € U and A € N that follow from the facts that « is bounded-
monomial with bounded C'-norm. O

4.3. Pre-parameterization and the proof of Theorem 2.1.3

Let us fix some terminology for the rest of Section 4 (similar to convention 2.1.1). We
will work with certain reducts of Rb,", following [20]. For any language Z on R and any
subfield K of R, let us denote by 7% the expansion of Z by the functions

xP, if x > 0,
0 otherwise,

for p € K. Let Za, be the subanalytic language (in particular, the Z,,-definable subsets
of R” are precisely the globally subanalytic subsets of R"). Let 7 be a Weierstrass system
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and let Z g be the corresponding language as in [20, Definition 2.1]. (The language Z g is
always a reduct of Z,,.) By the field of exponents of ¥ is meant the set of real r such that
(0,1) > R : x + (14 x)" is Z g-definable; this set is moreover a field, see Remark 2.3.5
of [20]. Let K be a subfield of the field of exponents of 7. From now on up to the end of
Section 4 we will work with the %g-structure on R, definable will mean .Ef)gz—deﬁnable, and,

we say cell for a definable cylindrical set. Note that ﬁfn is an example of such a language,
whose structure on R was denoted by RS, above.

We can now state our pre-parameterization result, that generates C”-parameterizations
essentially by composing with power maps, and where possible parameter dependence is built
in via the triangularity property (3).

THEOREM 4.3.1 (Pre-parameterization). — Let X C (0, 1)" be definable, and suppose that
X is the graph of a definable function f : U — (0,1)"™™ for some m > 0 and open set
U C (0,1)™. Then there exist finitely many definable maps

gi U —> X,
such that the following hold

D Ui (Ui) = X.
(2) Each Uj is an open cell in (0, 1)™.

(3) Each ¢; is a triangular map, in the sense that for each j < m there is a unique map
N<;(U;) - <;(X) making a commutative diagram with ¢; and the projection maps
X - I.j(X) =I.;U) and Uy — M ;(U;), with in both cases Il the projection
on the first j — 1 coordinates.

(4) For each i, the map ¢; and the walls o of U; are a-b-m with an associated bounded-
monomial map b; such that b; has bounded C'-norm.

In a way, property (4) is a key new property for parameterizations, and it may be compared
with preparation results from [21] and Lipschitz continuity results from [18], [23] and [29].

Theorem 2.1.3 follows directly from Theorem 4.3.1, Propositions 4.1.5, 4.2.6, Corol-
lary 4.2.4 and Lemma 4.1.3, as follows.

Proof of Theorem 2.1.3. — Up to finite partitioning and up to transforming 7" if neces-
sary, we may suppose that X = {(¢t,x) | t € T, x € X,} equals the graph of a function
f:U CTx(0,1)" — (0,1)" where U is an open cell in (0, 1)¥*”. Apply Theorem 4.3.1
to X to find maps ¢; on cells U; C (0, 1)**™. For any integer r > 0 write U; , for the set
of (t,x) € (0, 1)k*™ such that

vrxy =@ "t
lies in U; and write ¢; , : U; , — X for the composition of ¢; with ¥,.. Now it follows from
Propositions 4.1.5, 4.2.6, Corollary 4.2.4, Lemma 4.1.3 and by transforming the 7-space
back into the original form using property (3), that there are ¢ and d, and for each r definable
functions ¢y r0 : Viiro C (0,1)" — X, withi =1,..., cr?, such that V}.it,0 1s an open
cell whose walls have C”-norm at most 1 and the functions ¢, ; ;o have C"-norm at most

m

r’m r
JXT e Xg)
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one. By finally composing with the obvious triangular map, namely, if the i th variable runs
between the walls o; and f; in V; ;o then one composes with

O, )" = Viiso 2z (o + (Bi —0i)zi)i,

one gets the maps ¢, ; , with domain (0, 1)™ as desired by Theorem 2.1.3. O

The remainder of Section 4 is devoted to the proof of Theorem 4.3.1.

4.4. The preparation result from [20] and proof of Theorem 4.3.1

We recall the preparation result from [20] for definable functions, where definable means
ﬁigf—deﬁnable as convened in Section 4.3. This preparation result is crucial in the proof of
Theorem 4.3.1.

Let C C R" be a cell. Write [T, : R® — R""! for the projection sending x in R"
to X<y = (X1, .., Xp—1).

DEFINITION 4.4.1 (Prepared with center). — Let 8 : II.,(C) — R be a contin-
uous, definable function whose graph is either disjoint from C, or, contained in C \ C,
where C stands for the topological closure of C in R”. Furthermore, suppose that either
0 =0on II.,(C), or O(x<,) ~ x, for x € C, meaning that there is S > 1 such that
Xn/S < 0(x<p) < Sx, forall x € C. Then 6 is called a center for C. A definable function
f : C — R with bounded range is called prepared with center 6 if f can be written as

f(x) =bj(x)F(b(x))
with some nonvanishing analytic function F : V' — R, where V' is an open neighborhood

of b(C), the topological closure of »(C) in R®, and where b : C — R*® is a map with bounded
range whose component functions b; have the form

X > ai(X<p)|xn — 0(x<n)|"

with r; € K and where a; : I1-,(C) — R is definable, and where j liesin {1,...,s}.

We call the map b an associated bounded range map for f. Say that a definable map
f : C — R"forn > 1is prepared with center 6, and associated bounded range map b,

if all its component functions are (namely, each f; is prepared with center 8 and associated
bounded range map b.)

Note that the a-b-m functions of Definition 4.2.2 are much more specific than the
prepared functions with center 6 of Definition 4.4.1. Indeed, a-b-m functions are, in a way,
prepared in each variable instead of in one variable only and moreover with center(s) zero.

ProrosITION 4.4.2 (Preparation of definable functions, [20, Main Theorem)]).

Let f : X C R" — RY be a definable map on a definable set X . Suppose that the range
of f is bounded. Then there exists a finite partition of X into definable cells C; with some
center 0; such that fic, is prepared with center 0; for each i.

We are now ready to prove Theorem 4.3.1.
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Proof of Theorem 4.3.1. — We proceed by induction on m, the case m = 0 being trivial.
Suppose m > 1. By o-minimal cell decomposition (see [9, Chapter 3]), we can easily find
definable maps ¢; : U; — X satisfying (1), (2) and (3). By Proposition 4.4.2 and up to
further finite partitioning, we may furthermore suppose for each i that U; has a center 6;
and that the maps ¢; are prepared with center 6; and an associated bounded range map b;.
We may even suppose that 6; = 0 on U;, up to translating in the x,, variable. Indeed, by
Definition 4.4.1 there is S > 0 such that |6;| + 1 < S on U;, and we may suppose (up to
further finite partitioning) that either x,, — 6; > 0, or, x,, — 6; < 0 on U;. In the case that
Xm — 0; > 0 on U; (the other case is similar), one replaces U; by the cell

Ui = {x € (0,1)™ | (X<m, Sxm + 0i (x<m)) € Ui}

and ¢; by
Gi Ui = X x> 0 (X<m, SXm + 0 (x<m)).

By a classical technique (with inverse functions) we will ensure moreover that b; is C! and
that [0b; j/dx,,| < 1 for each component function b; ; of b;. Up to partitioning U; into
finitely many definable pieces and neglecting pieces of lower dimension by induction on m,
we may suppose that b; is C! on U; and that there is j such that [3b; j /3xp, | is maximalon U,
in the sense that |0b; j(x)/0x,,| > |0b; j/(x)/0xp| on U for any j’. Similarly, for this j we
may furthermore suppose that either |0b; ; /0x,,| < 1 on U;, or, that |0b; ; /0x,| > 1 on Uj.
In the first case, U; and ¢; are as desired. In the second case, we may, up to finite partitioning
and using o-minimality as before, suppose that for each x,, = (x1,...,xm—1) the function
sending X, to b; j(X<m.Xn) is injective. Let U; be the image of U; under the map sending x
to (X<m.b; j(x)), and let ¢; : U; — X be the composition of ¢; with the inverse function
of the map U; — U;. Now ¢; 1s as desired, by the chain rule and the special form of b; ;.
In particular, ¢; is prepared with center zero and associated bounded-range map b; with
|8I5,-, j/0xm,| < 1 for each component function 151', jof b;.

By the flexibility in Definition 4.4.1 for choosing the associated bounded range map, we
may from now on suppose that we have definable maps ¢; satisfying (1), (2), (3), that the
maps ¢; are prepared with center 0 and associated bounded range map b; such that moreover

9b; ;
|b; il <1—e¢, and |—2| <1—¢
X

for each component function b; ; of b; and some ¢ > 0.
We will now construct a finite collection of definable maps

¢ie :Uig > X

satisfying Properties (1), (2), (3), and (4), using the data we have so far. For each wall o of U;
bounding x,,, and with % being either b; or db; /dx,,, let hy be the map

4.9) he : e (Uy) = (=1,1)° 1 x> Im  A(xX<m, Xm),

Xm—>e(X<m)

where I, (U;) is the image of U; under the coordinate projection I1.,, sending x to xX<,.
This limit always exists by Definition 4.4.1 and the form of %,. Let {; be the collection of
functions on I, (U;) consisting of the component functions of the maps Ay from (4.9)
and the walls @ of U; bounding x,,. Up to partitioning U; further we may suppose for each
g € (; that either g is constant, or, 0 < [g| < 1 on U; (or both). Consider the map F;
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whose component functions are the functions |g| for those g in ; which are nonconstant.
Apply the induction hypothesis to the map F; instead of f to find a finite collection of maps
Yo : Vig — Graph(F;) satisfying properties (1), (2), (3), and (4), with Graph(F;) in the role
of X, and with associated bounded-monomial maps ¢;; . Plugging the newly obtained maps
Y¥;¢ in the previously obtained maps ¢; we get Properties (1), (2), (3), and (4) for X. With
more detail, let U;; be the cell

{x €0, D)™ (Wie(X<m)<mXm) € Ui}
and let ¢;¢ : U;y — X be the map

X = @i (wil(x<m)<m» Xm).

By the above application of the induction hypothesis and by construction, the function

X = b (Yig(X<m)<m» Xm)

is a-b-m with an associated bounded-monomial map d;; with bounded C !-norm. Let b;; be
the map (c;¢, di¢). Then the maps ¢;¢ satisfy (1), (2), (3) and (4) with associated bounded-
monomial maps b;y. This finishes the proof of Theorem 4.3.1. O

REMARK 4.4.3. — To address the mentioned question of [3, below Remark 3.8] it seems
useful to bound the number of maps ¢; in Theorem 4.3.1 (in the case that X is semi-
algebraic) in terms of the semi-algebraic complexity of X . It also seems interesting to control
the degree d of the polynomial c¢r? of Theorem 2.1.3 in terms of m. Also note that the
maps ¢y; , of Theorem 2.1.3 are analytic on their domain for each r, i, ¢ (by their construction
based on a-b-m maps), but, in general, they may not extend to an analytic map on an open
neighborhood of the closed box [0, 1] (indeed, a-b-m maps don’t extend in general).

5. The proof of the quasi-parameterization theorem

In this section we prove Theorem 2.2.3. First of all, however, we require some general
results about definable families of holomorphic functions. The definability here is with
respect to an arbitrary polynomially bounded o-minimal expansion of the real field, which
we now fix. Let us recall the following definition from Subsection 2.2, from where we also
recall that A(R) denotes the (open) disk in C of radius R and centered at the origin.

DEFINITION 5.1. — A definable family A = {F; : t € T} is called an (R, m, K)-family,
where R, K are positive real numbers and m is a positive integer, if for each t € T, the
function F; : A(R)™ — C is holomorphic and for all z € A(R)™, |F:(z)| < K.

Let us first observe that for such a family A, it follows from the Cauchy inequalities
that we have the following bounds on the Taylor coefficients of each F; at 0 € C™ (where
al:=oap!--ap! fora = (ay,...,0,) € N,

5.1.1. — Forallo« e N" and allt € T, w < %.

(For all general results from the theory of functions of several complex variables we refer

the reader to the first chapter of [14].)

(o)
In particular, if R > 1 then w

some M, € N such that

— 0 as |a| — oo and so for each r € T there exists
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(a)
512 - Foralla e N, 2O “”' < max{E Ol ¢ e N7 jo| < My}

The crucial uniformity result, from which the quasi-parameterization theorem will follow,
is that M, may be chosen to be independent of . This in turn will follow from the maximum
modulus theorem and the following general result.

LEMMA 5.2. — Letl <r < R, 0 < A < % and let {0, : t € T} be a definable family of
functions from (0, R) to (0, R). Then there exists ¢ € (0, L) such that for allt € T, there exists
v: € (r, R) such that 6;(y; — &) > %9, (ye)-

Proof. — Suppose not. Then there exists a function 7 : (0, 1) — T, which by the principle
of definable choice we may take to be definable, such that

52.1. — Forallx € (0,A) and all y € (r, R), Op)(y —x) < %Gn(x)(y).

Pick some y € (r, R) and consider the definable function x +— 0,y (y) for x € (0,1).
It follows from polynomial boundedness that there exist a positive integer N and v € (0, A)
such that

52.2. — Forallx € (0,v), Oyx)(y) > xV

Now let k be a positive integer and set xg := 2k , so that x¢ € (0, v) for large enough k.
By applying 5.2.1 successively with x = xpand y = y + xo,...,y + kxo we see that
0< On(xo)()’) < %On(xo)(y +X0) <. < (%)ken(xo)(y + kxo) < (%)kR

So by 5.2.2 we obtain (5X)N = x{ < 0,60 (») < (3)FR, which is the required
contradiction if k is sufficiently large. O

THEOREM 5.3. — Let A = {F; : t € T} be an (R,m, K)-family with R > 1. Then there
exists M = M(A) € N such that for allt € T and all o € N™,

|F(0)]

(@)
F7(
£ Ol ()|< ax{—t—" €
ol

N™ || < M}.

Proof. — Since the conclusion is trivially true for those ¢ € T such that F; = 0 (no matter
how M is chosen) we may assume that no F; is identically zero.

Fort € T define 6; : (0, R) — (0, R) by

R
(5.3.1) 0r(y) = supi| Fi(2)] : z € A(y)™}.

Now let r := R%, A= min{%, R — R-%} and apply 5.2 to obtain ¢ € (0, 1) such that
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5.3.2. — Forallt € T, there exists y, € (r, R) such that 6,(y; — &) > 26,(y/).
Now choose D € N so that

1
(5.3.3) (- %)D < ;-and
(5.3.4) 5(D +1)™ <2R%3.

We show that M := 2D satisfies the required conclusion. So fix some arbitrary ¢t € T and
let B; := max{—t+—+ i (O)l . la| < D}. (The o’s range over N for the rest of this proof.) It is
clearly sufficient to show that

(@)

FOO _

o! -

To this end we consider the truncated Taylor expansion of F;, namely

()
P,(z) := Z FZ—(O)Z“

o!
le|<D

(%) for all @ with |a| > 2D we have

Clearly we have
(5.3.5) forallz € A(R)™, |P:(z)| <(D + 1)"B;RP.

Now choose w = (wy, ..., Wy) € A(R)™ with |w;| = y; — e and |F;(w)| = %Gt(y, —¢)
(which is possible by 5.3.1 and the maximum modulus theorem), and let n; := y',”is so that
|ni| = 1fori =1,...,m. Consider the function H; : A(R) — C given by

Fi(un) — Pr(un)
uD+1

Ht(u) =

This is clearly a well-defined analytic function and by the maximum modulus theorem there
exists u; € A(R) with |u;| = y, such that |Ht(yt —¢)| <|H¢(uy)|. Thus

\Fi((ye —&)m) — P —e)m)] < (2—2 y — VDY By (Qugm) — Pe((uem)|.

t
However, by 5.3.3, (%)DJrl < (1—%)P*! < 1 s0, upon recalling that w = (y; — &) and
using 5.3.5, we see that

(53.6) Fiw)l = G Guml +2(D + 1) B, RP.

But | Fy(w)| = %9,(% g) > 2R9t(yt) by 5.3.2, and since |u,n| = y; we obtain from this
and 5.3.1 that |Fy(w)| > 5 L| F; (u;n)|. Putting this into 5.3.6 we obtain

(5.3.7) |Fy(w)| < g(D +1)"B,;RP.

Now, with a view to proving (*), let || > 2D. Then by applying the Cauchy inequalities
in the polydisk A(y; — &)™ and using 5.3.1 and 5.3.7 we obtain

|F®) O _ la| la| mp pD ol
T 9 (ve—e)-(ye—e) " = [Fr(w)[(y: —e) 7 < (D+1) B:R” (y: —¢)”
Buty,—e>r—21> R3 (by the definitions of r and 1), so by 5.3.4
(@)
F; _
IOl < 2D+ "B R (R = 2D+ "R B, < B,
o!
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as required. O

It follows immediately from 5.3 that the function ks : T — R given by

()
(5.3.8) Kka(t) == max{'FtOl—'(O)| ca € N}

is (well-defined and) definable. It also determines the topology on A in the following sense.

THEOREM 5.4. — Let A be an (R, m, K)-family with R > 1 as above and let r be a real
number satisfying 0 < r < R. Then there exists a positive real number B (r) such that for all
t €T andall z € A(r)™ we have |F;(z)| < BA(r) - kA (2).

Proof. — Choose a real number ry such that max{1,r} < ro < Randforeacht € T define
G, : A(r%)m — Cby G(z) := F;(roz). Then A* := {G, : t € T}isan (r%,m,K)-family
and since % > 1, we may apply 5.3 to it and obtain some M(A*) € N such that k= (t) =

(o)
max{w ca € N™, |a| < M(A*}. Fix ¢ € T. Then since G®(0) = r(LalFt(“)(O) (for all

(o)
o € N™) it follows that for all z € A(r)™ we have that | F;(z)| = | Y enm r(;la‘ . G’a—!(o) -z <
Kpx(2) - (ror—fr)'” < Kkp(t) - réu(A*) . (ror—ﬁr)m, which gives the required result upon setting
Ba(r) :=rg" ™7 Loy, O

The topology we are referring to here is determined by the metrics §, (0 < r < R) where,
for any two bounded holomorphic functions F,G : A(R)" — C, we define §,(F,G) :=
sup{|F(z) — G(z)| : z € A(r)™}. It turns out that if A is any (R, m, K)-family (regarded
here as a set, rather than an indexed set, of functions) and if 0 < r,7’ < R, then the metric
spaces (A, 8,) and (A, 8,/) are quasi-isometric via the identity function on A. (Note that this
is certainly not true in general for families of K-bounded holomorphic functions on A(R)™,
e.g., consider, for R = 2,m = K = 1, the family {0} U {($)? : ¢ € N}.) In fact, as we now
explain, they are quasi-isometric to a bounded subset of CV for some sufficiently large N
(depending only on A) endowed with the metric induced by the usual sup-metric on CV:
(w1, ..., wn)|| := max{|w;| : 1 <7 < Nj.

DEFINITION 5.5. — We say that an (R, m, K)-family A = {F; : t € T} is well-indexed if,
for some N € N, T is a bounded subset of CV and for each r with 0 < r < R, there exist
positive real numbers ¢,, C, such that for all ¢,¢" € T we have ¢,8,(Fy, Fy) < |t —t'] <
C,8,(Fy, Fy). That is, the map ¢ — F; is a quasi-isometry from the metric space (7, ||-||) to
the metric space (A, §,).

THEOREM 5.6. — Let A = {F; : t € T} be an (R, m, K)-family with R > 1. Then there
exists a well-indexed (R, m, K)-family N’ = {G; : t € T*} such that A = A’ as sets. Further,
dim(7*) < dim(7).

Proof. — Consider the (R, m,2K)-family Q := {F,— F, : (t,t') € T?} and let M(Q) € N
be as given by 5.3 (with €2 in place of A). We take our N = N(A) to be the cardinality of the
set {o € N : |a| < M(RQ)}.

(a)

Define themapw : T — CV by w(t) = (Ffa—!(o) c o € N |a| < M(R2)) and

set T* := w[T] (so obviously dim(7*) < dim(7)).Ift,/ € T and w(t) = w(t’) then
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F®0) _ FY0)
Tt T o

holds for all @ with |¢|] < M(2) and hence, by 5.3 (and the linearity

of the derivatives), it holds for all @ € N™. Thus F;, = F,. This does not necessarily
imply that ¢ = ¢’ but, by the principle of definable choice, we may choose a definable right
inverse w=! : T* — T of w and, setting G; = Fy—1(y (for ¢ € T*), we have that,

as a set, A = {G, : t € T*}. We complete the proof by showing that the (R, m, K)-family
{G, : t € T*}is well-indexed.

Firstly, by 5.1.1 we have that T* C mN, so T* is a bounded subset of C¥. For the
quasi-isometric inequalities consider some r € (0, R).

We may take C, = max{l,r M} Indeed, suppose t,#/ € T*. Lets = w~!(t) and
s’ = w~!(¢"). Then by the Cauchy inequalities applied to the function (Fy — Fy ) restricted
to the disk A(r)™, we have that for all @ € N™, l(Fer!')a(o)l < 8r(fiy0:|175/). In particular,
[t =t']| = llo(s) — o(s")|| < Cr8,(Fs, Fyr) = Cr8,(Gy, Gr).

Finally, we take ¢, to be Bq(r)~!, where Bq(r) is as in 5.4 (with Q in place of A).
Then, with ¢,¢/,s,s” as above, and z € A(r)™ we have by 5.3 and 5.4, |(Fs; — Fy)(z)| <
Ba(r)-ka({s.s")) = Ba(r) - lo(s) —w(s")| = Ba(r) - It —t'|l. So [t = t'|| = ¢;6:(G+, Gr),
as required. O

This result suggests a natural way of compactifying definable (R, m, K)-families. Let
A = {F; : t € T} besuch a family with R > 1 and assume, as now we may, that it is
well-indexed (with T a bounded subset of CV, say). We wish to extend A to a family A well-
indexed by the closure 7 of T in CV. So for ¢ € T choose a Cauchy sequence (r) : i € N)
in T converging to ¢ (in the space (CV, ||-||)). Then by the quasi-isometric property of the
indexing it follows that (F,q) : i € N) is a Cauchy sequence in (A, §,) for every r € (0, R).
So by Weierstrass’ theorem on uniformly convergent sequences, there exists a holomorphic
function F; : A(R)™ — C such that, for each r € (0, R), §;(F,i», Fr) — O0asi — oo.
It is easy to check that F; depends only on ¢ (and not on the particular choice of Cauchy
sequence) and that our notation is consistent if # happens to liec in 7. We have the following

THEOREM 5.7. — The collection A = {F, : t € T} as defined above is a well-indexed
(R, m, K)-family.

Proof. — Everything follows from elementary facts on convergence (and we may take the
same constants c,, C, for the quasi-isometric inequalities) apart from the definability of A.
To see that this holds too, let

graph(A) := {{(t,z,w) e CN" 1.t € T,z € A(R)", Fi(z) = w}.

Then graph(A) is a definable subset of C¥+7+1 (this being the definition of what it means
for A to be a definable family). We complete the proof by showing that

() forall (t,z,w) e CN*m+1 t €T,z e A(R)" and F,(z) = w if and only if z € A(R)"
and (¢, z, w) € graph(A).

So let (t,z, w) € CN+m+1,

Suppose first thatt € T,z € A(R)” and F;(z) = w. Choose a sequence (t%¥) : i € N)in T

converging to t. Choose r so that |z] < r < R. Then by the construction of F; we have that
8, (Fyoy, Fr) — 0asi — oo. In particular, | F,)(z)— Fi(z)| = 0asi — oo, i.e., F,i)(z) > w
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asi — 00.S0 (tV, z, F,i)(z)) — (t,z,w) asi — oo. Since (t®, z, F,i)(z)) € graph(A) for
each i € N, it follows that (¢, z, w) € graph(A) as required.

For the converse, suppose that z € A(R) and that (¢, z, w) € graph(A). Then certainly
t € T and we must show that F,(z) = w, thereby completing the proof of (*).

Let ((t®,z9 w;) : i e N) be a sequence in graph(A) converging to (f,z, w). Then
20 — zasi — oo andsince z € A(R), we may choose r < R so that z € A(r)” and
z® e A(r)™ foreach i € N. Since 1) — t asi — oo, it follows from the construction of F;
that 8, (F,w), Fy) — 0 asi — oo. In particular, |F,(i)(z(i)) — F;(z®)] - 0asi — oo. But by
the definition of graph(A), F,i)(z%)) = w; for alli € N and hence |w; — F,(z®)| — 0
asi — oo. However, F;(z)) — F,(z) asi — oo (because F; is certainly continuous
on A(r)™) and hence w; — F;(z) asi — oo. Since w; — w asi — oo it now follows
that w = F;(z) as required. O

Having shown how to compactify (R, m, K)-families, we now projectivize them.

THEOREM 5.8. — Let A = {F; : t € T} be an (R, m, K)-family with R > 1. Assume that
fornot € T does F; vanish identically. Let Ry satisfy 1 < Ry < R. Then there exists a positive
real number Ko and an (Ry, m, Ko)-family AT = {G, : t € T} such that

5.8.1. — AT is well-indexed and T is closed in its ambient space CVN ;

5.8.2. — Foreveryt € T, there exists A; > 0 andt™ € T" such that G, = A Fr [ A(R)™;
5.8.3.
5.8.4.

The (real) dimension of T is at most that of T ;

Fornot € TT is G, identically zero.

Proof. — We consider the (R, m, K¢)-family {K 0] [ A(Rp)™ :t € T} (cf. 5.3.8), where
Ko = BA(Rp) (cf. 5.4). Using 5.6, let A* = {G, : t € T*} be a well-indexing of it. Then
dim(T*) < dim(T). We set TT := T* and AT := A* asin 5.7. Then 5.8.1-3 are clear.
For 5.8.4, let us first note that if ¢ € T* then for somes € T, G, = —Ls [ A(Rp)™ and

kA (s)
()
hence there exists « € N™ with |a| < M(A) such that w = 1 (see 5.3 and 5.3.8). Now
let:¥ € T*. We must show that G,+ does not vanish identically. For this, choose ¢ € T* such
that [|r—1T| < < so that §,(G,, G,+) < 3 (by 5.5 withr = 1). It now follows from the Cauchy

inequalities applied to the function G, G,+ restricted to the unit polydisk A(1)™, that for

G 0)-G%¥ (o
all @ € N we have ‘[()a—,”()l 5. So choosing o with ———— 16, (0)|

|G‘°”< 0)|

= 1 as above, we see

that

%. In particular, G,+ does not vanish identically. O

REMARK. — The hypothesis that Ry < R is necessary here: the reader may easily verify
that for the (2,1,1)-family A = {g, : ¢ € [0,1)} where g/(z) = 122 and for each
given K > 0, there is no (2, 1, Ko)-family AT satisfying 5.8.1-4.

We are almost ready for the proof of the quasi-parameterization theorem (2.2.3). This
will proceed by induction on the dimension of the given family {X; : ¢t € T}, i.e, the
(minimum, real) dimension of the indexing set 7". The inductive step will involve a use of
the Weierstrass Preparation Theorem (or, rather, a modification of the argument used in the
complex analytic proof of the Weierstrass Preparation Theorem) and, as usual, one has first
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to make a transformation so that the function being prepared is regular in one of its variables.
Furthermore, in our case the transformation will have to work uniformly for all members of
a certain definable family of functions and for all values of the other variables. Unfortunately,
the usual linear change of variables does not have this property. Instead we use a variation of
the transformation used by Denef and van den Dries in their proof of quantifier elimination
for the structure R,, (see [6]). The result we require is contained in the following

THEOREM 5.9. — Let A = {F; : t € T} be an (R,m, K)-family with R > 1 (and, for
non-triviality, with m > 2) such that for not € T does F; vanish identically. Let R' and R" be
real numbers satisfying 1 < R” < R’ < R. Then there exist positive integers D1, ..., Dpy—1
and a positive real number 1 such that the bijection

0:C™ > C™:iz=(z1.....2m) > (21 + 0z2V .z + 9zPm=1 2,)
satisfies
59.1. - O[AR)"] € AR)™,
59.2. - 7' [A()"] € AR")", and

5.9.3. — Foreacht € T andz' € A(R')"! the function z,, v F;00(z', z,) (for zym € A(R))
does not vanish identically in z,.

This will follow from the following general

LEMMA 5.10. — Let m > 1 and suppose that b = {X; : t € T} is a definable family
of subsets of R™ such that for allt € T, dim(X;) < m. Then there exist positive integers

Dy,...,Dy—q1 such that for allt € T, alln > 0 and all wy,...,wu—1 € R, there exists
e=c¢e(t,n,wy,...,Wy—1) > 0such that
X, N {{wy +9xP w4+ pxPr X)) e R 10 < x <€) = 0.

Proof. — Induction on m. For m = 1, each X; is (uniformly) finite. So obviously we can
find, foreacht € T,an e = &(t) > 0 such that X; N (0,¢) = @, which is the required
conclusion in this case.

Now let’s assume that the lemma holds for somem > 1and that {X; : ¢ € T'}is a definable
family of subsets of R™*! each having dimension at most .

Fort € T define S, = {s €¢ R® : {y € R : (y,s) € X,}isinfinite}. Then
{S; : t € T} is a definable family of subsets of R” and clearly dim(S;) < m for each
t € T.So we may apply the inductive hypothesis to this family and obtain (with a small

shift in notation) positive integers D», ..., Dy, such that forallt € T, all > 0 and all
wy, ..., W, € R, there exists € = (¢, n, wa, ..., Wy ) > 0 such that for all x € (0, ), we have
that (w, + nxP2, ... w,, + nxPm x) ¢ S;, i.e., there are at most finitely many y € R such

that (y, ws + nxP2, ..., wy, + nxP7 x) € X,.
Now, by the principle of definable choice, there exists a definable function

H:T x(0,00) xR" xR — (0, 1]

such that forallr € T, alln € R, all w € R™ and all x € R, its value H(¢, n, w, x) is some
y € (0, 1) such that for no u € (0, y) do we have (w, + nu, wy + nxP2, ... w, + nxPm x) € X,
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if such a y exists (and is, say, 1 otherwise). Notice that by the discussion above, such a y does
indeed exist whenever x € (0, (¢, n, wa, ..., Wn)).

We now apply polynomial boundedness to obtain a positive integer D; such that for all
teT,alln > 0and allw = (wy,...,wy) € R™, there exists y = y(¢,n,w) > 0, which
we may assume is strictly less than (¢, n, wa, ..., wy,), such that for all x € (0, y), we have
H(t,n,w,x) > xP1.Soif x € (0,y), then x € (0,¢) and hence for all u € (0, H(t,n, w, x))
we have that (wy + nu, wa +9xP2, ..., w, +nxP7 x) ¢ X,. But xP1 € (0, H(t,n, w, x)) so
(wy +nxP1 wy +9xP2 . w, + nxPm x) ¢ X,. Since this holds for arbitrary x € (0, y),
we are done (upon taking (¢, n, wy, ..., Wy) := Y, n, w)). O

Proof of 5.9. — For t belonging to T and u to (—R,R)™, let X,y be defined as
{fw e (-R,R)" : w+ui € A(R)" and F;(w + ui) = 0}. Then dim(X(,)) < m
because if U is some non-empty, open subset of (—R’, R’)™ such that w + ui € A(R)™
and F;(w + ui) =0 for all w € U, then F;, being holomorphic, would vanish identically
on A(R)™ which is contrary to hypothesis. So we may apply 5.10 to the family X 1= {X 4 :
(t,u) € T x (=R, R)™} and obtain positive integers Dy, ..., D,,—; with the property stated
in the conclusion of 5.10. Now choose 1 so small that the resulting map 6 satisfies 5.9.1 and
5.9.2. (The inverse of @ is given by 071 (z1, ..., Zm) = (21 = nzE s ... Zme1 — NZE" 1, Z00).)

To verify 5.9.3,lett € T andletz’ = (z1,....Zm—1) € AR)Y" LI F; 00(z',zpy) = 0
for all z,, € A(R’) then, in particular, (z; + nxP1, ..., zp—1 + nxPm=1,x) € A(R')™ and
Fi(zy +nxP1, . .. zn_1 +nxPm=1 x) = 0 for all sufficiently small positive x € R. However,
if the real and imaginary parts of z; are, respectively, a; and b; (fori = 1,...,m — 1), this
implies that (a1 + nxP1, ..., am—1 + nxPm=1,x) € X p) for all sufficiently small x > 0,
where b := (by,...,byu—1,0). But this clearly contradicts the conclusion of 5.10.

We now come to the proof of the quasi-parameterization theorem (2.2.3), so definability
is now, and henceforth, with respect to a structure as described in 2.2.1.

Recall that we are given a definable family & = {X; : s € S} of subsets of [—1, 1]* each
of dimension at most m, where m < n. We assume that the indexing set S has been chosen
of minimal dimension and we denote this dimension by indim( c{)). We are required to find
some R > 1, K > 0, a positive integer d, and an (R, m + 1, K)-family A*, each element of
which is a monic polynomial of degree at most d in its first variable, such that

(%) foralls € S, there exists F € A* such that X; C {x = (x1,...,x,) € [-1,1]" : Jw €
-1, 10" Ajy F(xi,w) = 0}.

Let us first consider the case indim(&l) = 0, i.e., the case that & is finite. In fact, it is
sufficient to consider the case that U consists of a single set, X say, where X C [—1, 1]" and

dim(X) <m < n. O

REMARK 5.11. — Indeed, it is obvious that, in general, if the conclusion of the quasi-
parameterization theorem holds for the families {X; : s € S1} and {X; : s € S,}, then it
also holds for the family {X; : s € S; U S3}.

Since we are now assuming that our ambient o-minimal structure is a reduct of R,;,, we
may apply the 0-mild parameterization theorem (Proposition 1.5 of [15]) which tells us that
(after routine translation and scaling) there exists a finite set {&; : 1 < j < [} of definable,
real analytic maps ®; = (¢ 1,....¢j.) : (=3,3)" — R” (say) whose images on [—1, 1]
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[0
cover X, and are such that |¢"(;,( ) < ¢ - 371 for some constant ¢, and all @ € N™,

j=1...,landi = 1,... n If we now invoke our other assumption on the ambient

0-minimal structure, then (again, after translation and scaling at the expense of increasing the

number of parameterizing functions) there is no harm in assuming that each function ¢;,; has

a definable, complex extension (for which we use the same notation) to the polydisk A(2)™.
We now set

I n
Fx.w) =[] = ¢i(w))
j=li=1

forx € A(2), w € AQ2)™.

Then F is a monic polynomial of degree d = In in its first variable. Further, {F'} is, for
some K > 0,a (2,m + 1, K)-family which clearly has the required property (*).

We now proceed by induction on indim(l). So consider some k,m,n € N with
k =indim(¥) > 1 and m < n, and a definable family ¥ = {X; : s € S} of subsets
of [—1, 1]" with dim(X) < m foreach s € S, and assume that the theorem holds for families
of indim < k (for arbitrary m,n). Now it is easy to show that we may represent & in the
form {X, : u € [—1, 1]F}.

In order to apply the inductive hypothesis we define the family % := {Y, : v’ € [-1, 11
of subsets of [—1, 1]**! where, for each u’ € [—1, 1]F7!,

(5.12) Y 1= {{x,ug) € [-1,1]"T! 1 x € X, ).

(In the course of this proof we shall use the convention that if v is a tuple whose length,
p say, is clear from the context, then v = (vy,...,v,), and v/ = (v1,...,vp—1). Also, by
convention, [—1,1]° := {0}.)

Clearly indim(%) < k and, for each u’ € [—1,1]*"!, dim(Y,)) < m +1 < n + 1, 50
we may indeed apply our inductive hypothesis to ¥ and obtain some R > 1, K > 0, an
(R,m + 2, K)-family A = {H; : t € T}, and a positive integer d such that

5.13. — Each H, is a monic polynomial of degree at most d in its first variable, and

5.14. — For each u’ € [—1,1]F~! there exists = t(u’) € T such that Y,y C {{x,x,41) €
[—1, 11"+ : 3w € [-1, 1] such that A2 H,(x;, w) = 0}.

In order to prepare the functions in A as discussed above, we must first remove those ¢
from T such that for some z; the function H;(zy, -) vanishes identically (in its last m + 1 vari-
ables). To do this, we first note that, by the principle of definable choice, the correspondence
u' — t@) (for u’ e [—1,1]¥"1) may be taken to be a definable function and so the set
E:={uel-11]: H ) (ug, 0) = 0} is definable (where 0 is the origin of R™*1). We have
dim(E) < k because if E contained a non-empty open subset of [—1, 1]¥, then we could find
some u’ € [—1,1]¥~1 such that H;@y(ug.0) = 0 for all ug lying in some non-empty open
interval, which is impossible as H;(,)(:, 0) is a monic polynomial.

Thus, by another use of the inductive hypothesis, the family {X,, : u € E} satisfies the
conclusion of the quasi-parameterization theorem and so, by 5.11, it is sufficient to consider
the family {X,, : u € [-1,1]F \ E}.

For this we define, for each u € [—1,1]% \ E, the function H,f : A(R)"*! — C by

(5.15) Hy(z) := Hyw)(ug, 2),
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so that for all u € [-1, 1] \ E, H}(0) # 0. Now set
(5.16) Ao:={H}:ue[-1,1]F\ E}.

Then Ay is an (R, m + 1, K)-family which does not contain the zero function. So we may
apply 5.8 to it with, say, Ry = % (and m + 1 in place of m) and obtain, for some Ky > 0,
an (Ro,m + 1, Ko)-family Ag ={G;:t € TJ} having properties 5.8.1-4.

I claim that

5.17.—Forallu e [—1,1]% \ E, there exists ¢ € TJ such that

Xy Sixe[=11)" 13w e [-1L 1"\ Hio(xiow) =0 A Gyi(w) = 0)}.

i=1

Indeed, let u € [—1,1]% \ E. By 5.8.2, there is some ¢t € T(;r and A > 0 such that for all
z € A(Ro)™ !,

(5.17.1) G,i1(z) = A- H*(2).

Now let x € X,,. Then, by 5.12, (x,uy) € Y,/. Hence, by 5.14, we may choose w € [—1, 1]"*!
such that Hy)(x;, w) = 0fori = 1,...,n and Hyu)(ug, w) = 0. Since [—1, 1]"T! C
A(Rg)™*1, 5.17 now follows from 5.17.1 and 5.15.

In order to complete the proof we must reduce the range of the w-variable in 5.17
from [—1, 1]™*! to [-1, 1]™. The idea is simple: we use the relation G,+(w) = 0 to express
Wm+1 as a function of wy, ..., wy,, and then substitute this function for wy,+1 in the first
conjunct appearing in 5.17. Of course, there are some technical difficulties to be overcome.
Firstly, we must ensure that G,+(w) really does depend on wy,+; and this is achieved by the
transformation described in 5.9. Secondly, the argument only works locally. However, the
compactness of TOT will guarantee that this is sufficient. And finally, the functional depen-
dence of wy, 1 on wy, ..., w, will, in general, be a many-valued one. This is precisely why
we only obtain quasi-parameterization rather than parameterization.

So, to carry out the first step, we apply 5.9 to the (Rg, m + 1, K¢)-family Ag ={G;:te TJ}
(which is permissible as it satisfies 5.8.4) with R" = 1 + M and R" =1+ M (and
m + 1 in place of m). Let 6 : C™*1 — C™*1 be as in 5.9 and, for each 1 € T} set

(5.18) G::=G;00 | A(R)™F1.

Then {G; : t € TJ} is an (R',m + 1, Ko)-family. Further, since the family Ag is well
indexed (5.8.1), it immediately follows (from 5.5 and the Cauchy inequalities) that for each
a € Nm+1_ the function G (z) is continuous in both 7 and z, for (1, z) € TJ x A(Rg)™+1 .
Since 6 is holomorphic throughout C™*! we obtain

5.19. — For each « € N"T1 the function G®(z) is continuous in both ¢ and z for
(t.2) € T] x A(R)™ !,

Also, it follows from 5.9.3 that
5.20. - Forallt € TJ and all z/ € A(R’)™, the function G,(z’, ) does not vanish identically
on A(R').
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Having modified the functions G;, we must now adjust the functions H,(,) in order to
preserve 5.17. Accordingly, we define, for each u € [—1,1]¥ \ E, the function H, : A(R")"*2 - C
(which, in fact, only depends on u’) by

(5'21) I:Iu(217227 e 7Zm+2) = Ht(u’)(Zl, 9(229 st 9Zm+2))‘

Then {H, : u € [-1,1]F \ E}isan (R',m + 2, K)-family and, as we show below, the
following version of 5.17 holds.

5.22.—Forallu € [-1,1]% \ E, there exists ¢ € T(;r such that

X, Cf{xe[-1.1]": v e (=R". R")" ' (\ Hy(xi,v) =0 Gi(v) = 0)}.

i=1

Indeed, let u = (u’,ux) € [—1,1]% \ E and choose tT ¢ ToT as in 5.17. Suppose x € X,
and (by 5.17) choose w € [—1,1]™*! such that A7_; H; @ (xi, w) =0 A G+ (w) = 0.
Let v = 6 Y(w). Then by 59.2, v € A(R”)™*!. But all the coordinates of v are
real, so v € (—R”, R")™*1. Also, fori = 1,...,n we have, by 5.21, that Hy(xj,v) =
Hywn(xi,0(v)) = Hiqy(xi, w) = 0. Similarly, by 5.18, G,T(v) = G,+(w) = 0and 5.22
follows.

Let us also record here the fact that in view of 5.13, and since the transformation 5.21 does
not affect the variable z;, we have

5.23.— For each u € [—1, 1]% \ E, the function H,, is a monic polynomial of degree at most
d in its first variable.

We now carry out the local argument, as sketched above, that expresses z,,+1 as a many-
valued function of z’ = (zy, ..., z;;) via the relation G,+(z’, z4+1) = 0.

First, fix some R; with R” < R; < R’ and for each r with R” < r < R; let C, be the
circle in C with center 0 and radius r. Consider the set

(5.24) Ve i={(t.z") € T{ x A(Ry)" : forall zpy41 € Cr, Gi(z',Zme1) # O}

It follows from 5.19 that V; is an open subset of T, J X A(Rl)m (for the ||-||-metric inherited
from CN+™ where N is as in 5.8.1). Further, it follows easily from 5.20 that the collection
{V, : R” < r < Ry} covers the compact space T(;r X A(Rl)m.

Now, by the Lebesgue Covering Lemma, there exists ¢ > 0, a positive integer M, and
points rM ... 1) ¢ TOT, a®, . ...a™ e [-R"”, R"]" such that

5.25. — The collection {™ + A(e)N : h = 1,..., M} covers TOT.

5.26. — Each set a'/) + A(2¢)™ is contained in A(R;)™ and the collection {a/) + (—¢, &)™ :
j=1,...,M}covers [-R", R"]", and

5.27.—Foreachh,j =1,..., M, thereexists r ; € (R”, Ry) such that

(t®,aD) + A2e) ) N (T x ARD™) S Vs, .
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Fix, for the moment, , j € {1,..., M}. Then foreacht € TJ NP + A2e)V) and each

7' € a) + A(2¢)™ it follows from 5.26, 5.27 and 5.24 that the contour integral
1 3G
(+4) — G

27l Cr, ; 8zm+1

(2 zZms1) - (Ge (2 zZms1)) ! dzms

is well defined. It counts the number of zeros (with multiplicity) of the function G,(z’, ")
lying within the circle Cy, ;. Further, by 5.19, 5.24 and 5.27, the integral is a continuous
function of (¢, z’) in the stated domain, and so is constant there. Let its value be g ; and
let Z(z,z") = (p1(t,2'), ..., pg, ,; (t,2')) be alisting of the zeros of G.(z',") lying within the
circle Gy, ; (each one counted according to its multiplicity).

Now, forz € Ty N (t® + AQe)N), (za. .. .. zms1) € a¥) + AQ2e)™, u € [-1,1]F\ E, and
each/ =1,...,qp, j, we have, by 5.26 and the fact that r; ; < Ry, that

22y Zm+1, PI(E, 22, - ooy Zmt1) € A(RY)
and hence that the function

LB Cx @Y + AQe)™) - C

given by
an.;
h.j ~
(5.28) Lya(z1,22, ..o Zmg1) 1= l_[ Hy(z1,22, .. Zma1, 018 22, oo Zma))
I=1

is a monic polynomial of degree at most d - g5 ; in z; (by 5.23). Note that it is well-defined
since H,, has domain C x A(R’)"*! and R; < R’. (It is certainly possible that gk,; = 0,in
which case we intepret the empty product as 1 and the unique monic polynomial of degree 0
as the constant function 1.)

Now, since Li’,j (z1,22, .., Zm+1) 1s symmetric in the p; (¢, 22, . . ., Zm+1) (i.e., it does not
depend on our particular ordering of the list Z(z, z5, ..., zm+1)), it follows easily that it is
a definable function of all the variables ¢, u, z1, ..., z,+1 (restricted to the stated domain)
and, as a standard argument shows, it is holomorphicin zy, z5, ..., Z;;+1. (Here one uses the
generalization of (**) giving the integral representation of sums of powers of functions of the
roots of G,(z’,-). Arbitrary symmetric polynomial combinations of such functions are then
given as polynomials in these power sums.)

We now scale and translate the function Lf’,f by setting
b Y . ,
(5.29) Pl (z1.22, . Zmg1) == LY (z1.a$ + 625, .. ..aP) + ezm11)

so that each P,}f;f maps C x A(2)" to C, is a monic polynomial of degree at most dgj,_ ;
in z1, and is bounded by K94./. (Notice that this holds true, by our convention concerning
the monic polynomial of degree 0, even if g ; = 0.)

We now combine the functions P,}f;f as h and j vary over {l,..., M}. Firstly, for h €
{I,....M},ue[-1,1¥\ Eand s € T, N t™ + A(2¢)") define

M

h,j

(5.30) pl =T P
j=1
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so that each Pffu maps C x A(2)™ to C, is a monic polynomial of degree at most dj, :=
Zjle dqp,; in z1, and is bounded by (K + 1)M9# where qj :== max{gn; : j = 1,..., M}.
Finally, we set

M
(5.31) A = Pl u e [FL R e TE 0 0+ AN
h=1
Then A*isa (2,m + 1, (K + 1)M4)-family, where ¢ := max{q, : h = 1,..., M}, each
element of which is a monic polynomial of degree at most max{dy : h = 1,..., M} inits first
variable.

We now verify (*) (stated just before 5.11) which will complete the proof. We have to show
thatifu € [-1, 1]\ E, then there exists F € A*suchthat X,, C {x € [-1,1]" : Jw € [-1, 1]
Nizi F(xi,w) = 0}

So let such a u be given. Choose T € T(;r asin 5.22. By 5.25 we may choose h € {1,..., M}
such that /7 € t® 4+ A(e)Y. We let our F be the function P/ (see 5.30), which of
course lies in A* (see 5.31). Now pick any x = (x1,...,Xx,) € Xu,. By 5.22 we may pick
v = (V,Vms1) € (=R”, R")"* 1 such that A7_, H,(x;,v) = 0A G,+(v) = 0. By 5.26, there
exists j € {1,..., M} such that v’ € a'/) + (—e, £)”. Now, since v, lies within the circle
Cr,; and is a zero of the function G~ﬁ(v’ ,+) = 0, it follows that g5 ; > 0 and that for some
I =1,...,qi;, we have vy 11 = p;(tT,v"). Thus A_, H,(xi,v', pr(¢T,v")) = 0, and hence
N Li’;{u(x,-, v') = 0 (see 5.28). We now choose w € [—1,1]™ such that v/ = a) + ew.
Then A/_, PthT]u (xi, w) = 0 (see 5.29). It follows that A\!_, PthT’u (x;, w) = 0 (see 5.30), i.e.,
Ai—; F(xi,w) = 0, and we are done.
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