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UNIFORM PARAMETERIZATION OF SUBANALYTIC
SETS AND DIOPHANTINE APPLICATIONS

 R CLUCKERS, J PILA  A WILKIE

A. – We prove new parameterization theorems for sets definable in the structure Ran

(i.e., for globally subanalytic sets) which are uniform for definable families of such sets. We treat
both C r -parameterization and (mild) analytic parameterization. In the former case we establish a
polynomial (in r) bound (depending only on the given family) for the number of parameterizing
functions. However, since uniformity is impossible in the latter case (as was shown by Yomdin via a
very simple family of algebraic sets), we introduce a new notion, analytic quasi-parameterization (where
many-valued complex analytic functions are used), which allows us to recover a uniform result.

We then give some diophantine applications motivated by the question as to whether the Ho.1/

bound in the Pila-Wilkie counting theorem can be improved, at least for certain reducts of Ran. Both
parameterization results are shown to give uniform .logH/O.1/ bounds for the number of rational
points of height at most H on Ran-definable Pfaffian surfaces. The quasi-parameterization technique
produces the sharper result, but the uniform C r -parameterization theorem has the advantage of also
applying to Rpow

an -definable families.

R. – Nous démontrons de nouveaux résultats de paramétrisations d’ensembles définissables
dans Ran (aussi appelés ensembles sous-analytiques globaux), uniformément dans les familles défi-
nissables. Nous traitons les paramétrisations C r ainsi que les paramétrisations douces et analytiques.
Dans le casC r , nous obtenons une borne polynômiale (en r , et dépendant seulement de la famille) pour
le nombre de fonctions paramétrisantes. Dans le cas de paramétrisations analytiques, comme l’unifor-
mité est impossible (démontré par Yomdin pour une famille semi-algébrique très simple), nous intro-
duisons une nouvelle notion de paramétrisations quasi-analytiques (utilisant les fonctions analytiques
complex multi-valuées), ce qui nous permet d’obtenir des résultats uniformes. Ensuite nous donnons
des applications diophantiennes motivées par la question de savoir si la borne Ho.1/ dans le théo-
rème de comptage de Pila-Wilkie peut être améliorée pour certaines réductions de la structure Ran.
Nos deux approches de paramétrisations nous permettent d’obtenir des bornes uniformes de grandeur
.logH/O.1/ pour le nombre de points rationels de hauteur au maximumH sur les surfaces pfaffiennes
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2 R. CLUCKERS, J. PILA AND A. WILKIE

qui sontRan-définissables. Les paramétrisations quasi-analytiques nous donnent des résultats plus fins,
mais les paramétrisations C r ont l’avantage de fonctionner aussi dans le cadre plus général de familles
Rpow

an -définissables.

1. Introduction

The aim of this section is to give an informal account of the results appearing in this paper.
Precise definitions and statements are given in the next section.

So, we are concerned with parameterizations of bounded definable subsets of real
euclidean space. The definability here is with respect to some fixed (and, for the moment,
arbitrary) o-minimal expansion of the real field. By a parameterization of such a setX � Rn,
we mean a finite collection of definable maps from .0; 1/m to Rn, wherem WD dim.X/, whose
ranges cover X . The fact that parameterizations always exist is an easy consequence of the
cell decomposition theorem, but the aim is to construct them with certain differentiability
conditions imposed on the parameterizing functions together with bounds on their deriva-
tives. The first result in this generality was obtained in [27] (by adapting methods of Yomdin
[33] and Gromov [13] who dealt with the semi-algebraic case), where it was shown that for
each positive integer r there exists a parameterization consisting ofC r functions all of whose
derivatives (up to order r) are bounded by 1. Further, the parameterizing functions may be
found uniformly. This means that if X D fXt W t 2 T g is a definable family of m-dimen-
sional subsets of .0; 1/n (say), i.e., the relation “t 2 T and x 2 Xt” is definable in both x
and t , then there exists a positive integer Nr such that for each t 2 T , at most Nr functions
are required to parameterize Xt and each such function is definable in t . (The bound Nr
does, of course, also depend on the family X , but we usually suppress this in the notation.
The point is that it is independent of t .) Unfortunately, the methods of [27] do not give an
explicit bound forNr and it is the first aim of this paper to do so in the case that the ambient
o-minimal structure is the restricted analytic field Ran (where the bounded definable sets are
precisely the bounded subanalytic sets), or a suitable reduct of it. We prove, in this case, that
Nr may be taken to be a polynomial in r (which depends only on the given family X ). While
we have only diophantine applications in mind here, this result already gives a complete
answer to an open question, raised by Yomdin, coming from the study of entropy and
dynamical systems (see e.g., [33], [32], [13], [3]). In fact, even in the case that the ambient
structure is just the ordered field of real numbers (which is certainly a suitable reduct of Ran

to which our result applies), the polynomial bound appears to be new and, indeed, gives
a partial answer to a question raised in [3] (just below Remark 3.8); the essential missing
ingredient to solve this question completely is an effective form of the preparation result of
[20] in the semi-algebraic case. Our uniform C r -parameterization theorem also holds for
the expansion of Ran by all power functions (i.e., the structure usually denoted Rpow

an ) and
suitable reducts (to be clarified in Section 2) of it. In fact, we obtain a pre-parameterization
result in Section 4.2 which underlies C r -parameterizations.

Next we consider mild parameterizations. Here it is more convenient to consider para-
meterizing functions with domain .�1; 1/m (where m is the dimension of the set being
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PARAMETERIZATIONS AND DIOPHANTINE APPLICATIONS 3

parameterized) and we demand that they are C1 and we put a bound on all the derivatives.
We shall only be concerned with functions that satisfy a so called 0-mild condition, namely
that there exists an R > 1 such that for each positive integer d , all their d ’th derivatives
have a bound of order R�d � dŠ (which in fact forces the functions to be real analytic).
It was shown in [15] that any reduct of Ran has the 0-mild parameterization property:
every definable subset of .�1; 1/n has a parameterization by a finite set of 0-mild functions.
However, this result cannot be made uniform. For Yomdin showed in [34, Proposition 3.3]
(see also [35, page 416]) that the number of 0-mild functions required to parameterize the
set fhx1; x2i 2 .�1; 1/2 W x1 � x2 D tg necessarily tends to infinity as t ! 0. Our second
parameterization result recovers uniformity in the 0-mild setting but at the expense of,
firstly, covering larger sets than, but ones having the same dimension as, the sets in the given
family and secondly, covering not by ranges of 0-mild maps but by solutions to (a definable
family of) Weierstrass polynomials with 0-mild functions as coefficients.

In [27] the parameterization theorem is applied to show that any definable subset of .0; 1/n

(the ambient o-minimal structure being, once again, arbitrary) either contains an infinite
semi-algebraic subset or else, for all H � 1, contains at most H o.1/ rational points whose
coordinates have denominators bounded by H . (For the purposes of this introduction we
refer to such points as H -bounded rational points.) Although this result is best possible in
general, and is so even for one dimensional subsets of .0; 1/2 definable in the structure Ran,
it has been conjectured that the H o.1/ bound may be improved to .logH/O.1/ for certain
reducts of Ran (specifically, for sets definable from restricted Pfaffian functions), and it is our
final aim in this paper to take a small step towards such a conjecture.

We first observe that the point counting theorem from [27] quoted above follows (by
induction on dimension) from the following uniform result (the main lemma of [27] on page
610). Namely, if m < n and X D fXt W t 2 T g is a definable family of m-dimensional
subsets of .0; 1/n, and " > 0, then there exists a positive integer d D d."; n/ such that for each
t 2 T and for allH � 1, all theH -bounded rational points ofXt are contained in the union
of at most O.H "/ algebraic hypersurfaces of degree at most d , where the implied constant
depends only on X and ". Now, for the structure Rpow

an (or any of its suitable reducts), our
uniform C r -parameterization theorem allows us to improve the bound here on the number
of hypersurfaces to O..logH/O.1// (for H > e, with the implied constants depending only
on the family X ) but, unfortunately, their degrees have this order of magnitude too. Actually,
the bound on the degrees is completely explicit, namely Œ.logH/m=.n�m/�, but as this tends to
infinity withH , the inductive argument used in [27] (where the degree d only depended on "
and n) breaks down at this point. Our 0-mild (quasi-) parameterization theorem does give a
better result for (suitable reducts of) the structure Ran in that the number of hypersurfaces is
bounded by a constant (depending only on X ), but the bound for their degrees is the same
as above and so, once again, the induction breaks down.

We can, however, tease out a uniform result for rational points on certain one and two
dimensional sets definable from restricted Pfaffian functions, but for the general conjecture
a completely new uniform parameterization theorem that applies to the intersection of a
definable set of constant complexity with an algebraic hypersurface of nonconstant degree
is badly needed.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



4 R. CLUCKERS, J. PILA AND A. WILKIE

N. – As this paper was being finalized, the arXiv preprints [1], [2] appeared. There
is some similarity in the methods used there and the complex analytic approach here.
There seems to be no inclusion in either direction in the parameterization results nor in the
diophantine applications; the diophantine result of [2] deals with sets of arbitrary dimension
but in a smaller reduct of Ran.

2. Precise statements

2.1. C r -parameterizations

The largest expansion of the real field (that is, the expansion with the most defin-
able sets) to which our uniform C r -parameterization theorem applies is the structure
Rpow

an , i.e., the expansion by all restricted analytic functions and all power functions
.0;1/! .0;1/ W x 7! xs (for s 2 R). However, when it comes to applications there is
considerable advantage to be gained from working in suitable reducts of Rpow

an for which
more effective topological and geometric information is available for the definable sets. (For
example, for sets definable from restricted Pfaffian functions one has, through the work of
Khovanskii ([17]) and Gabrielov and Vorobjov ([11]), good bounds (in terms of natural
data) on the number of their connected components.)

It turns out that for our proof here to go through, the property required of the ambient
o-minimal structure is that it should be a reduct of Rpow

an in which a suitable version of the
Weierstrass Preparation Theorem holds for definable functions. Now, a large class of such
reducts has been identified and extensively studied by D. J. Miller in his Ph.D. thesis (and
in [20]), inspired by the results from [19] and [22] in the subanalytic case. These are based
on a language for functions in a Weierstrass system together with a certain class of power
functions. There is no need for us to go into precise definitions here-we will quote the relevant
results from [20] when needed. Suffice it to say that examples include the real ordered field
itself, Ran, Rpow

an or, indeed, the expansion of Ran by any collection of power functions that
is closed under multiplication, inverse and composition (i.e., such that the exponents form a
subfield of R). Many more examples appear in the literature (see [8], [7] and [20]). We shall
assume, in the precise statement of the theorem below and throughout Section 4, that all
notions of definability are with respect to some such fixed reduct of Rpow

an :

C 2.1.1. – We fix a reduct of Rpow
an based on a Weierstrass system F and a

subfield K of its field of exponents as described in [20, Definition 2.1]. As there, we denote its
language by L

K
F .

Note that, for the smallest possible choice of F and K D Q, the L
K
F -definable sets are

precisely the semi-algebraic sets. For the largest possible choice of F , and for K D R, one
has that L

K
F equals Rpow

an .

D 2.1.2. – Let r be a nonnegative integer or C1. The C r -norm kf kC r of a
C r -function f W U � Rm ! R, with U open and nonempty, is defined (in R [ fC1g) by

sup
x2U

sup
j˛j�r
˛2Nm

jf .˛/.x/j;

4 e SÉRIE – TOME 53 – 2020 – No 1



PARAMETERIZATIONS AND DIOPHANTINE APPLICATIONS 5

where N is the set of nonnegative integers, and where we have used the standard multi-index
notation, namely for ˛ D h˛1; : : : ; ˛mi 2 Nm, f .˛/ stands for @˛f=@x˛ (D f for ˛ D 0),
and j˛j denotes

Pm
iD1 ˛i . By the C r -norm of a C r -map f W U � Rm ! Rs , with U open,

we mean the maximum of the C r -norms of the component functions of f .

T 2.1.3 (The uniform C r -parameterization theorem). – Let n; k be positive inte-
gers and m be a nonnegative integer with m � n. Let X D fXt W t 2 T g be an L

K
F -definable

family of m-dimensional subsets of .0; 1/n, where T is some L
K
F -definable subset of Rk . Then

there exist positive numbers c and d , depending only on the family X , such that for each positive
integer r , and for each t 2 T , there exist analytic maps

�r;i;t W .0; 1/
m
! Xt

for i D 1; : : : ; crd , whose C r -norms are bounded by 1 and whose ranges cover Xt . Moreover,
for each i and r , f�r;i;t W t 2 T g is an L

K
F -definable family of maps.

The proof of 2.1.3 is given in Section 4 and relies on a pre-parameterization result
(Theorem 4.3.1) which underlies C r -parameterizations for all r via power maps.

2.2. Quasi-parameterization

For the main result of this section we require our ambient o-minimal structure to be a
reduct of Ran: we do not know whether Theorem 2.2.3 below (or some version of it) holds if
power functions with irrational exponents are admitted. We shall be working with complex
valued definable functions of several complex variables where the definability here is via
the usual identification of C with R2. Naturally enough we will require the existence of a
sufficient number of definable holomorphic functions:

C 2.2.1. – We fix a reduct of Ran with the following property. If f WU � Rm ! R,
with U open, is a definable, real analytic function, then for each a 2 U there exists an open
V � Cm with a 2 V \Rm � U and a definable holomorphic function Qf W V ! C such that for
all b 2 V \ Rm, Qf .b/ D f .b/. For the remainder of this subsection and throughout Section 5
(unless otherwise stated) definability will be with respect to this structure.

The main examples are the real field and Ran itself. Others may be constructed as follows.
Let F be a collection of restricted (real) analytic functions closed under partial differentia-
tion and under the operation implicit in 2.2.1 (i.e., under taking the real and imaginary part
functions of the local complex extensions). Then the expansion of the real field by F will
be a reduct of Ran satisfying 2.2.1. This follows fairly easily from the theorem of Gabrielov
([10]) asserting that such a reduct is model complete. (For a local description of the complex
holomorphic functions that are definable in such a structure (at least, in a neighborhood of
a generic point) see [31].)

For R > 0 we denote by �.R/ the open disk in C of radius R and centered at the origin.

D 2.2.2. – Let R > 0, K > 0 and let m be a positive integer. Then a definable
family ƒ D fFt W t 2 T g, where T is a definable subset of Rk for some k, is called an
.R;m;K/-family if for each t 2 T , the function Ft W �.R/m ! C is holomorphic and for all
z 2 �.R/m we have jFt .z/j � K.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



6 R. CLUCKERS, J. PILA AND A. WILKIE

We shall develop a considerable amount of theory for such families in Section 5. To
mention just one result, which is perhaps of independent interest, we will show that if R > 1
and, for each t 2 T ,

Ft .z/ D
X

a.t/˛ � z
˛

is the Taylor expansion of Ft for z D hz1; : : : ; zmi in an open neighborhood of 0 2 Cm

(where the summation is over all m-tuples ˛ D h˛1; : : : ; ˛mi 2 Nm), then there exists
M D M.ƒ/ 2 N such that ja.t/˛ j achieves its maximum value for some ˛ with j˛j � M .
(In addition to the multi-index notation introduced in 2.1.2 we write z˛ for z˛11 � � � z

˛m
m .) The

fact that M is independent of t here is crucial for all the uniformity results that follow and
leads to the following

T 2.2.3 (The quasi-parameterization theorem). – Let n and m be nonnegative
integers with m < n and let X D fXs W s 2 Sg be a definable family of subsets of Œ�1; 1�n,
each of dimension at most m, where S is a definable subset of Rk for some k. Then there exists
R > 1, K > 0, a positive integer d and an .R;mC 1;K/-family ƒ D fFt W t 2 T g such that
each Ft is a monic polynomial of degree at most d in its first variable and for all s 2 S , there
exists t 2 T such that

Xs � fx D hx1; : : : ; xni 2 Œ�1; 1�
n
W 9w 2 Œ�1; 1�m such that

n̂

iD1

Ft .xi ; w/ D 0g:

The proof of 2.2.3 is given in Section 5. However, some of the ideas involved can be
illustrated by considering Yomdin’s example mentioned in Section 1. Here n D 2, m D 1,
S D .0; 1/ and Xs D fhx1; x2i 2 .�1; 1/2 W x1 � x2 D sg (for each s 2 S ). If we take
T D .0; 1/ and Gt .z1; z2/ D z21 � z2z1 C t (for t 2 T ), then for all s 2 S , there exists t 2 T
such that

Xs � fx D hx1; x2i 2 Œ�1; 1�
2
W 9w 2 Œ�2; 2� such that

2̂

iD1

Gt .xi ; w/ D 0g:

(Just take t D s and then, for hx1; x2i 2 Xs , take w D x1 C x2.)

The fact that w may not lie in the required interval Œ�1; 1� is an annoying, but entirely
superficial, difficulty that can always be resolved by a process that we will refer to as “trans-
lation and scaling”. In this case no scaling is required: we just take our Ft .z1; z2/ to be
Gt .z1; z2/ � Gt .z1; z2 C 1/ � Gt .z1; z2 � 1/, so that fFt W t 2 T g is a .2; 2; 1331/-family each
member of which is a monic polynomial in z1 of degree 6, and which now has the required
property exactly.

2.3. Diophantine applications

The above parameterization results may be applied to obtain results about the distribution
of rational points on definable sets.

The height of a rational number q D a=b where a; b 2 Z with b > 0 and gcd.a; b/ D 1 is
defined to be H.q/ D max.jaj; b/ and the height of a tuple q D .q1; : : : ; qn/ 2 Qn is
H.q/ D max.H.qi /; i D 1; : : : ; n/. For X � Rn we set

X.Q;H/ D fx 2 X \Qn W H.x/ � H g

4 e SÉRIE – TOME 53 – 2020 – No 1



PARAMETERIZATIONS AND DIOPHANTINE APPLICATIONS 7

and define the counting function

N.X;H/ D X.Q;H/:

It is convenient to express the diophantine applications in the same settings as the corres-
ponding parameterization results. Thus 2.3.1 below considers a family X � T�.0; 1/n of sets
Xt � .0; 1/

n; t 2 T , while 2.3.2 considers a family X � T �Œ�1; 1�n of setsXt � Œ�1; 1�n; t 2
T , in each case definable in a suitable (specified) o-minimal structure. As mentioned above,
this is a superficial issue. We assume that each fiber Xt has dimension m < n.

By Œx� we denote the integer part of a real number x: Œx� 2 Z and Œx� � x < Œx�C 1.

T 2.3.1. – Let X � T � .0; 1/n be a family of sets Xt ; t 2 T , of dimension m,
definable in Rpow

an . Then there exist positive constants C1 D C1.X /; c1 D c1.X / such that,
for H � e and t 2 T , Xt .Q;H/ is contained in the union of the zero sets of at most

C1.logH/c1

non-zero polynomials with real coefficients of degree at most

Œ.logH/m=.n�m/�:

For a definable family in the smaller structure Ran we get a more precise result.

T 2.3.2. – Let X � T � Œ�1; 1�n be a family of sets Xt ; t 2 T , of dimension m,
definable in Ran. Then there exists a positive constant C2 D C2.X / such that, if H � e and
t 2 T then Xt .Q;H/ is contained in the union of the zero sets of at most

C2

non-zero polynomials with real coefficients of degree at most

Œ.logH/m=.n�m/�:

If these results could be iterated on the intersections we would be able to prove a bound
of the form .logH/O.1/ for rational points up to height H , unless the set contained a
positive-dimension semi-algebraic subset, as discussed in §1. However, as the degrees of the
hypersurfaces increase with H , even a second iteration would require a result for such non-
definable families.

However, for certain families of Pfaffian sets of dimension 2 (see the basic definitions
below) we can carry this out using estimates due to Gabrielov and Vorbjov [11]. They have the
right form of dependencies to give a suitable result for the curves arising when the surface is
intersected with algebraic hypersurfaces of growing degree. This idea has been used in several
previous papers [4], [15], [16], [25], [26].

D 2.3.3. – A Pfaffian chain of order r � 0 and degree ˛ � 1 in an open domain
G � Rn is a sequence of analytic functions f1; : : : ; fr on G satisfying differential equations

dfj D

nX
iD1

gij .x; f1.x/; : : : ; fj .x//dxi

for 1 � j � r , where gij 2 RŒx1; : : : ; xn; y1; : : : ; yj � are polynomials of degree not
exceeding ˛. A function

f D P.x1; : : : ; xn; f1; : : : ; fr /;

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



8 R. CLUCKERS, J. PILA AND A. WILKIE

whereP is a polynomial in nCr variables with real coefficients of degree not exceeding ˇ � 1
is called a Pfaffian function of order r and degree .˛; ˇ/. A Pfaffian set will mean the set of
common zeros of some finite set of Pfaffian functions.

By RPfaff we mean the expansion of the real ordered field R by all Pfaffian functions
f W Rn ! R; n D 1; 2; : : : This is an o-minimal structure [30]. The smaller o-minimal struc-
ture RresPfaff is the expansion of R by all functions of the form f jŒ0;1�n where f W G ! R is
a Pfaffian function and Œ0; 1�n � G.

The following notion of a “Pfaffian surface” is much more restrictive than a two-
dimensional set definable in RPfaff.

D 2.3.4. – By a Pfaffian surface we will mean the union of the graphs in R3 of
finitely many Pfaffian functions of two variables with a common Pfaffian chain of order and
degree .r; ˛/, defined on a “simple” domain G in the sense of [11]. Namely, a domain of the
form R2; .�1; 1/2; .0;1/2 or f.u; v/ W u2 C v2 < 1g. We take the complexity of the surface
to be the triple .r; ˛; ˇ/, where ˇ is the maximum of the degrees of the Pfaffian functions
defining the surface.

D 2.3.5. – Let X � Rn. The algebraic part of X , denoted Xalg is the union of
all connected positive dimensional semi-algebraic subsets ofX . The complementX�Xalg is
called the transcendental part of X and denoted X trans.

By combining 2.1.3 with the methods of [25], [26] we get a uniform result for a family
of Pfaffian surfaces definable in Rpow

an . For an individual surface definable in the struc-
ture RresPfaff such a bound is due to Jones-Thomas [16]. Perhaps a combination of the
methods could give uniformity for Rpow

an -definable families of restricted-Pfaffian-definable
sets of dimension 2.

P 2.3.6. – Let r be a nonnegative integer and ˛; ˇ positive integers. Let
X � T � .0; 1/3 be a family of surfaces Xt ; t 2 T , definable in Rpow

an such that each fiber Xt is
the intersection of .0; 1/3 with a Pfaffian surface of complexity (at most) .r; ˛; ˇ/. Then there
exist C3.X /; c3.X / such that, for H � e and t 2 T ,

N.X trans
t ;H/ � C3.logH/c3 :

When the family is definable in Ran we can prove a more precise uniform result in which
the exponent depends only on the complexity of the Pfaffian surfaces.

P 2.3.7. – Let r be a nonnegative integer and ˛; ˇ positive integers. Let
X � T � Œ�1; 1�3 be a family of surfaces Xt ; t 2 T , definable in Ran such that each fiber Xt
is the intersection of Œ�1; 1�3 with a Pfaffian surface of complexity (at most) .r; ˛; ˇ/. Then
there exist C4.X / and c4.r; ˛; ˇ// such that, for H � e and t 2 T ,

N.X trans
t ;H/ � C4.logH/c4 :

The proofs of Theorems 2.3.1 and 2.3.2 and Propositions 2.3.6 and 2.3.7, assuming the
parameterization results, are given in Section 3.
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3. Proofs of diophantine applications

3.1. Some preliminaries for 2.3.1 and 2.3.2

For a positive integer k and nonnegative integer ı we let

ƒk.ı/ D f� D .�1; : : : ; �k/ 2 Nk W j�j D �1 C : : :C �k D ıg;

�k.ı/ D f� D .�1; : : : ; �k/ 2 Nk W j�j D �1 C : : :C �k � ıg;
Lk.ı/ D ƒk.ı/; Dk.ı/ D �k.ı/:

We recall that N denotes the set of nonnegative integers.
LetX D Xt be a fiber of our definable family. We will adapt the methods of [26], in which

we explore X.Q;H/ with hypersurfaces of degree

d D Œ.logH/m=.n�m/�:

This leads us to consider Dn.d/ �Dn.d/ determinants � whose entries are the monomials
of degree d (indexed by �n.d/) evaluated at Dn.d/ points of X . These points lie on some
algebraic hypersurface of degree d if and only if � D 0.

Given some suitable parameterization of X by functions of m variables, we estimate the
above determinant by a Taylor expansion of the monomial functions to a suitable order b
(remainder term order b C 1). The order of the Taylor expansion will match the size of the
matrix, and so we define b.m; n; d/ as the unique integer b with

Dk.b/ � Dn.d/ < Dk.b C 1/:

It is an elementary computation, carried out in [26], that

b D b.m; n; d/ D

�
mŠ

nŠ

�1=m
dn=m.1C o.1//;

where the o.1/ means, here and below, as d !1 with m; n fixed. In particular,

b.m; n; d/C 1 � 2

�
mŠdn

nŠ

�1=m
;

provided d � d0.m; n/ and hence provided H � H0.m; n/.
The fact that b is rather larger than d is crucial to the estimates.

3.2. Proof of 2.3.1

In this and subsequent subsections, C; c; : : :will denote constants depending on X , while
E denotes a constant depending only on m; n, and in both cases they may differ at each
occurrence.

Let X D Xt be a fiber of X . We assume for now that H � H0.m; n/ for some H0.m; n/
to be specified in the course of the proof.

According to Theorem 2.1.3, we can parameterize X by functions

� W .0; 1/m ! .0; 1/n

such that all partial derivatives of all component functions up to degree b C 1 are bounded
in absolute value by 1, and we can cover X using at most

Cbc
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such functions, where C; c depend on X .

Let us fix one such function � D .�1; : : : ; �n/, where �i W .0; 1/m ! .0; 1/. From now
on we deal only with �. Our bounds will depend only on bounds for the derivatives of the
coordinate functions of � up to order b C 1. Since b depends on n;m; d , from now on, all
constants will depend only on m; n; d .

We consider a Dn.d/ �Dn.d/ determinant of the form

� D det
�
.x.�//�

�
with � D 1; : : : ;Dn.d/ indexing rows and � 2 �d .n/ indexing columns, where
x.�/ D .x

.�/
1 ; : : : ; x

.�/
n / 2 X.Q;H/ are points in the image of �, say x.�/ D �.z.�//

where z.�/ 2 .0; 1/m, later to be taken to be in a small disk in .0; 1/m, and x� D
Q
x
�i
i .

As each x.�/j is a rational number with denominator � H , we find that there is a positive
integer K such that K� 2 Z and

(�) K � HndDn.d/:

If we write

ˆ� D

nY
iD1

�
�i
i

for the corresponding monomial function on the �i then we have

� D det
�
ˆ�.z

.�//
�
:

We now assume that the z.�/ all lie in a small disk of radius r centered at some z.0/ and
expand the ˆ� in Taylor polynomials to order b (with remainder term of order b C 1).
For ˛ 2 �k.b/; ˇ 2 ƒk.b C 1/ we write

Q˛
�;� D

@˛ˆ�.z
.0//

˛Š

�
z.�/ � z.0/

�˛
; Qˇ

�;� D
@ˇˆ�.z

.0//

ˇŠ

�
�.�/� � z

.0/
�ˇ
;

with a suitable intermediate point �.�/� (on the line joining z.0/ to z.�/), and with
˛Š D

Qk
jD1 j̨ Š, so that the Taylor polynomial is

ˆ�.z
.�// D

X
˛2�k.b/

Q˛
�;� C

X
ˇ2ƒm.bC1/

Qˇ
�;�

and we have

� D det

0@ X
˛2�m.bC1/

Q˛
�;�

1A :
We expand the determinant as in [24] (see also [28], eqn (2), p48), using column linearity

to get

� D
X
�

�� ; �� D det
�
Q�.�/
�;�

�
with the summation over f� W �n.d/! �m.b C 1/g.

Now if, for some k 2 f1; : : : ; bg, we have

(��) ��1.ƒm.k// > Lm.k/;
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then�� D 0 as the corresponding columns are dependent (the space of homogeneous forms
in .z.�/ � z.0// of degree k has rank Lm.k/). Thus all surviving terms have a high number of
factors of the form .z.�/ � z.0// and/or .�.�/� � z.0//. We quantify this.

The function ˆ� is a product of j�j � d functions �i , which have suitably bounded
derivatives. Let us consider more generally a function

‚ D

ıY
iD1

�i ;

where �i have j� .˛/i .z/j � 1 for all j˛j � b C 1. Then, for ˛ with j˛j � b C 1, we have

‚.˛/ D
X
˛.i/

Ch.˛.1/; : : : ; ˛.ı//
ıY
iD1

� .˛
.i//

with the summation over ˛.1/ C : : :C ˛.ı/ D ˛, where

Ch.˛.1/; : : : ; ˛.ı// D
mY
jD1

 
j̨ Š

˛
.1/
j Š : : : ˛

.ı/
j Š

!
:

Since j� .˛/i .z/j � 1 for all j˛j � b C 1 we have

j‚.˛/.z/j �
X
˛
.i/
1

 
˛1Š

˛
.1/
1 Š : : : ˛

.ı/
1 Š

!
� : : : �

X
˛
.i/
m

 
˛mŠ

˛
.1/
m Š : : : ˛

.ı/
m Š

!
;

each summation subject to
P
i ˛

.i/
j D j̨ hence

j‚.˛/.z/j � ı˛1 � � � ı˛m D ıj˛j:

Therefore

jQ˛
�;�j �

.j�jr/j˛j

˛Š
� emj�jr j˛j � emd r j˛j;

and for a � which avoids the condition .��/ above (under which �� D 0) all terms in its
expansion are bounded above in size by

emdDn.d/rB ;

where

B D B.m; n; d/ D

bX
kD0

Lm.k/k C

 
Dn.d/ �

bX
�D0

Lm.�/

!
.b C 1/:

Note that
�
Dn.d/ �

Pb
�D0Lm.�/

�
� 0 by our choice of b. We have the asymptotic expres-

sion (see [26])

B D B.m; n; d/ D
1

.mC 1/Š.m � 1/Š

�
mŠ

nŠ

�.mC1/=m
dnCn=m.1C o.1//:

The number of terms from all the �� is Dm.b C 1/Dn.d/Dn.d/Š and we conclude that

j�j � Dm.b C 1/
Dn.d/Dn.d/Še

mdDn.d/rB :

Thus we have an integer K� with

Kj�j � HndDn.d/Dm.b C 1/
Dn.d/Dn.d/Še

mdDn.d/rB

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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and if Kj�j � 1 then so is its Bth root. Now with our choice of d we find that

ndDn.d/

B
D E

dnC1

dnCn=m
.1C o.1// D Ed�.n�m/=m.1C o.1//

(whereE, according to the convention described above, is a constant depending only on n;m,
and possibly different in each occurence) thus

HndDn.d/=B � E;

since d � 0:5.logH/m=.n�m/, say, for H sufficiently large in terms of n;m.
The remaining terms �

Dm.b C 1/
Dn.d/Dn.d/Še

mdDn.d/
�1=B

are also bounded as d !1 (see [26]) and so

.Kj�j/1=B � Er;

where E is a constant depending only on n;m, provided H � H0.n;m/ is sufficiently large.
If rE < 1 then all points of X.Q;H/ parameterized by � from this disk lie on one algebraic
hypersurface of degree d , because the rank of the rectangular matrix formed by evaluating
all monomials of degree � d at all such points is less than Dn.d/.

Since .0; 1/m may be covered by someE 0 such disks, and there areC.bC1/c � C 0.logH/c
0

maps � which cover X , the required conclusion follows for H � H0.m; n/. However for
H � H0 the number of points is bounded depending only on H0; m; n.

R. – Note that the statements in [26, 3.2 and 3.3] tacitly assume that the mildness
parameter A satisfies A � 1, which is used in the last line of page 501 of [26].

3.3. Setup for 2.3.2

This and the subsequent two subsections are devoted to the proof of Theorem 2.3.2. After
some preliminary results, the proof itself is in 3.5.

We have a family of setsXt � Œ�1; 1�n, of dimensionm, definable in Ran. By 2.2.3 we may
assume this family is contained in a family given by a quasi-parameterization, which we may
take to be of the following form. There exist a positive integer N (which is the degree d of
the polynomial dependence of the functions Ft in their first variable in 2.2.3) and analytic
functions

hi;j W Œ�1; 1�
mC�
! R; i D 1; : : : ; n; j D 0; : : : ; N � 1;

converging on a disk of radius r0 > 1 in the first m variables. The remaining variables
for Œ�1; 1�� are for the parameters of the quasi-parameterization. We have functions

uj W T ! Œ�1; 1��

(which need not be definable) such that, setting u.t/ D .u1.t/; : : : ; u�.t//, for all t 2 T and
x D .x1; : : : ; xn/ 2 Xt there exists w D .w1; : : : ; wm/ 2 Œ�1; 1�m such that

xNi D hi;N�1.wi ; u.t//x
N�1
i C : : :C hi;0.wi ; u.t//:

The functions hij record the polynomial dependence of the functions in 2.2.3 on their first
variable; according to 2.2.3 we can in fact assume that the hi;j are independent of i , but we
don’t need this.
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We keep the previous convention regarding constants.

3.4. Preliminary estimates

For each i , setting x D xi and hj D hi;j and suppressing the subscript i and the arguments
of the hj , we have a relation

xN D hN�1x
N�1
C : : :C h0:

By means of this relation, all powers x� ; � 2 N may be expressed as suitable linear combina-
tions of 1; x; : : : ; xN�1, namely

x� D

N�1X
jD0

q�;jx
j

with coefficients q�;j 2 ZŒh0; : : : ; hN�1�. In particular qN;j D hj . We need an estimate for
the degree and integer coefficients of the q�;j .

Let H be the N �N matrix of analytic functions0BBBBBBB@

0 0 0 : : : 0 h0

1 0 0 : : : 0 h1

0 1 0 : : : 0 h2
:::
:::
:::
: : :

:::
:::

0 0 0 : : : 1 hN�1

1CCCCCCCA :

Then H acts as a linear transformation on the vector space with (ordered) basis
f1; x; : : : ; xN�1g and the q�;j are the entries of the column vector

H �

0BBBBB@
1

0

:::

0

1CCCCCA :
Inductively, the entry H �

j̀
is in ZŒh0; : : : ; hN�1� of degree max.0; j � N C �/ and the sum

of at most max.2��1Cj�N ; 1/ pure (i.e., with coefficient 1) monomials. We have proved the
following.

L 3.4.1. – For all � 2 N and j D 0; : : : ; N �1, q�;j is a sum of at most 2� monomials
of degree at most � in the hj .

The above is for one variable. We now return to the multivariate setting with
x D .x1; : : : ; xn/. For � 2 N we then have

x�i D

N�1X
jD0

qi;�;jx
j ;

where qi;�;j is the previously labeled q�;j for the relevant hj D hi;j .
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If � 2 Nn we have

x� D

nY
iD1

x
�i
i D

nY
iD1

N�1X
jD0

qi;�i ;jx
j
D

X
�2M

q�;�x
�;

where q�;� D
Qn
iD1 qi;�i ;�i .

We now want to bound the derivatives (in the w variables) of the q�;�. For
˛ D .˛1; : : : ; ˛m/ 2 Nm we set ˛ D max.˛i /.

L 3.4.2. – For suitable constants C;R and all ˛ 2 Nm we have

jq
.˛/

�;�
.w; u/j

˛Š
� 2j�j.˛ C 1/.j�j�1/mC j�jRj˛j:

Proof. For derivatives (in the w-variables) of the hi;j we have a bound of the form

jh
.˛/
i;j .w; u/j

˛Š
� C Rj˛j;

where ˛ 2 Nm, valid for every i; j , by Cauchy’s theorem, since they are analytic on some disk
of radius r0 > 1.

We have that qi;�i ;j is a sum of at most 2�i monomials in the hi;j , each of degree at most �i .
Therefore q�;� is a sum of at most 2j�j monomials each of degree j�j in the hi;j . Consider one
such monomial

g D
Ỳ
hD1

�h;

where each �h 2 fhi;j ; W i D 1; : : : ; n; j D 0; : : : ; N � 1g and ` � j�j. As before

@˛g D @˛�1 : : : �` D
X

˛.1/C:::C˛.`/D˛

Ch.˛.1/; : : : ; ˛.`//
Ỳ
hD1

@˛
.h/

�h:

Thus

@˛g

˛Š
�

X
˛.1/C:::C˛.`/D˛

Ỳ
hD1

@˛
.h/
�i

˛.h/Š
� C j�jRj˛j

X
˛.1/C:::C˛.`/D˛

1:

The number of summands is at most .˛ C 1/.j�j�1/m.

C 3.4.3. – For ˛ 2 Nm we have

jq
.˛/

�;�
.w; u/j

˛Š
� 2j�j.j˛j C 1/j�jmC j�jRj˛j:
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3.5. Proof of Theorem 2.3.2

We letX D Xt be a fiber of X . We will exploreX.Q;H/with real algebraic hypersurfaces
of degree

d D Œ.logH/m=.n�m/�;

and again consider Dn.d/ �Dn.d/ determinats

� D det
�
.x.�//�

�
D 0;

where � 2 �n.d/ indexes monomials and x.�/; � D 1; : : : ;Dn.d/ are points of X .
For each x.�/ there is some w.�/ such that the quasi-parmeterization conditions hold, i.e.,

“x.�/ is parameterized by the point w.�/”. Later we will assume that all the w.�/ are in the
disk of radius r entered at some w.0/.

By our assumptions (see .�/ above), there is a positive integer K � HndDn.d/ such that

K� 2 Z:

Now let M D f� 2 Nn W �i < N; i D 1; : : : ; ng. Then if x 2 X we have

x� D
X
�2M

x�q�;�.w; u.t//

for some w 2 Œ�1; 1�m where

q�;� D

nY
iD1

q�i ;�i :

There is a unique b D b.m; n; d;N / such that

N nDm.b/ � Dn.d/ � N
nDm.b C 1/:

Sincem < n there are fewer monomials inm variables than in n variables, and so if d suitably
large in terms of N; n then b is somewhat larger than d . Set

B.m; n; d;N / D

bX
ˇD0

N nLm.ˇ/ˇ C
�
Dn.d/ �N

n

bX
ˇD0

Lm.ˇ/
�
.b C 1/:

Since b is somewhat larger than d , we will have that B is somewhat larger than ndDn.d/ (as
d !1), as will be crucial.

Now we assume that thew.�/ are all in the disk of radius r entered at somew.0/. We expand
each q D q�;� in a Taylor polynomial with remainder term of order b C 1. For ˛ 2 �k.b/,
ˇ 2 ƒk.b C 1/ we write

Q�;˛
�;� D

@˛q�;�

˛Š

�
w.0/

� �
w.�/ � w.0/

�˛
; Q�;ˇ

�;� D
@ˇq�;�

ˇŠ

�
w.0/

� �
�
.�/

�;ˇ
� w.0/

�ˇ
for some suitable intermediate point �.�/

�;ˇ
. Then we have

� D det
� X
.�;˛/

Q�;˛
�;�

�
;

with the summation over .�; ˛/ 2 f0; : : : ; N � 1gn ��k.b C 1/.
We expand the determinant as previously in terms of maps

� W �n.d/! f0; : : : ; N � 1g
n
��k.b C 1/
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giving

� D
X
�

�� ; �� D det
�
Q�.�/
�;�

�
;

with the summation over � as above.
Now if for some � 2M;k with 0 � k � b we have

��1
�
f�g �ƒm.k/

�
> Lm.k/

then �� D 0 because the corresponding columns are dependent (the factors .x.�//� are
constant on the rows in those columns).

Since there areN n possibilities for�, we have that the total number of columns from which
an expansion term of degree k may be drawn for a surviving term is N nLm.k/.

We now assume that rR < 1. Then every surviving term is estimated by��
n.b C 1/mC

�d �Dn.d/
.rR/B

0

for some B 0 � B D B.m; n; d;N /, and since rR < 1 every term is estimated by the above
with B 0 D B.

The total number of terms, assuming no cancelation, is

Dn.d/Š .N
nDm.b C 1//

Dn.d/ :

Thus we have an integer K� with

Kj�j � HndDn.d/Dn.d/Š .N
nDm.b C 1//

Dn.d/
��
n.b C 1/mC

�d �D
.rR/B :

And if Kj�j � 1 then so is its Bth root.
Now we have (see [26])

Lm.d/ D

 
m � 1C d

m � 1

!
D

dm�1

.m � 1/Š
.1C o.1//;

where here and below o.1/ means as d !1 for fixed m; n;N . Thus likewise

Dm.d/ D LmC1.d/ D
dm

mŠ
.1C o.1//:

We find that

b.n;m;N; d/ D

�
mŠdn

nŠN n

�1=m
.1C o.1//

for d !1 with n;m;N fixed. Thus (by replacing the sum
Pb
ıD0Lm.ı/ı by an integral)

B.m; n;N; d/ D E.m; n;N /dn.mC1/=m.1C o.1//;

where E is a suitable combinatorial expression.
With our choice of d we have as before thatHndDn.d/=B � E is bounded depending only

on n;m (once H is sufficiently large in terms of n;m). We also have�
Dn.d/Š.N

nDm.b C 1//
Dn.d/

�1=B
D 1C o.1/

as d !1, so is bounded by some E.
Finally, we have that

dD

B
D

E

dn=m�1
.1C o.1// �

E

dn=m�1
;
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(with a different E) while similarly

bD

B
D E.1C o.1// � E:

Therefore
jK�j1=B � E C Rr

and all the points of X.Q;H/ in the image of the disk lie on one hypersurface of degree at
most d provided

r < .C E R/�1:

The box Œ�1; 1�m may be covered by

C 0 D .c.n/CERC 1/m

such disks, where c.n/ is the maximum side of a cube inscribed in a unit n-sphere. This gives
the desired conclusion for H � H0.m; n;N / and for smaller H it follows as the number of
such rational points is bounded.

3.6. Proof of 2.3.6 and 2.3.7

In the case of 2.3.6, by Theorem 2.3.1, Xt .Q;H/ is contained in the intersection of Xt
with at most C1.X /.logH/c1.X/ hypersurfaces of degree d D Œ.logH/m=.n�m/�, while in the
case of 2.3.7, by Theorem 2.3.2,Xt .Q;H/ is contained in the intersection ofXt with at most
C2.X / hypersurfaces of degree d D Œ.logH/m=.n�m/�.

If any such intersection has dimension 2, then the Pfaffian functions parameterizing the
surface Xt identically satisfy some algebraic relation. Then the surface Xt is algebraic, and
X trans
t is empty.
Thus we may assume that all the intersections have dimension at most 1. We will treat

these following the method in [26] by dividing the intersections into graphs of functions with
suitable properties, and estimating the rational points on any such graphs which are not semi-
algebraic using the Gabrielov-Vorobjov estimates.

Suppose that the fiber Xt is the intersection of Œ�1; 1�3 with the Pfaffian surface defined
by the Pfaffian functions

x; y; z W G ! R
of complexity (at most) .r; ˛; ˇ/. Write .p; q/ for the variables in G. Suppose that the poly-
nomial F.x; y; z/ of degree at most d defines the hypersurface V D VF .

The intersection Xt \ V is the image of the one-dimensional subset W � G defined by

�.p; q/ D F.x.p; q/; y.p; q/; z.p; q// D 0:

It is thus the zero-set of a Pfaffian function of complexity .r; ˛; dˇ/. The singular set
Ws � W is defined by � D �p D �q D 0, the zero-set Pfaffian functions of complexity
.r; ˛; ˛ C dˇ � 1/ (see [11, 2.5]).

At a point of W � Ws , W is locally the graph of a real-analytic function parameterized
by p if �p ¤ 0, or q if �q ¤ 0.

Proceeding as in [26], we decompose VF into “good” curves, and points. Here a “good”
curve is a connected subset whose projection into each coordinate plane of R3 is a “good”
graph with respect to one or other of the axes; namely, the graph of a function  which is
real analytic on an interval, has slope of absolute value at most 1 at every point, and such
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that the derivative of  of each order 1; : : : ; ŒlogH� is either non-vanishing in the interior of
the interval or identically zero.

Using the topological estimates of Gabrielov-Vorobjov [11, 3.3], Zell [36], and estimates
for the complexities of the various Pfaffian functions involved as in [26], one shows that
VF decomposes into a union of at most

C5.r; ˛; ˇ/d
C6.r;˛;ˇ/

points and “good” curves Y . If such a “good” curve is semi-algebraic, then so are its
projections to each coordinate plane, and also conversely. On a non-algebraic plane “good”
graph Y , one has

N.Y;H/ � C7.r; ˛; ˇ/.d logH/C8.r;˛;ˇ/

as in [26], using [25] and estimates for Pfaffian complexity. Combining the last two estimates
with those in the first paragraph of the proof gives the required conclusions.

4. Proof of the C r -parameterization theorem

In this section we prove Theorem 2.1.3, in a self-contained way except for Miller’s prepa-
ration result [20, Main Theorem]. We also show a so-called pre-parameterization result for
definable sets in Rpow

an , used to generate C r -parameterizations with the required number of
maps essentially by composing with power maps (see Theorem 4.3.1 and how it is used to
prove Theorem 2.1.3). In Theorem 4.3.1, there is at first sight no family version or parameter
dependence, but, at second sight one sees that it is implicitly built in via a triangular property
of the maps involved.

In Section 4.1 we give some results about derivatives of compositions, related to mild
functions and Gevrey functions, and we introduce the notion of weakly mild functions (see
Definition 4.1.2). In Section 4.2 we define a-b-m functions, and relate them with weakly
mild functions. In Section 4.3 we state the pre-parameterization result and use it to prove
Theorem 2.1.3. In Section 4.4 we prove our pre-parameterization result using a preparation
result from [20].

4.1. Compositions

We first equip the notion of mild functions from [26] with an order. Next, we introduce
the related notion of weakly mild functions (see Definition 4.1.2). These notions are variants
of the notion of Gevrey functions [12].

D 4.1.1. – Let A > 0 and C � 0 be real, and let r > 0 be either an integer
or C1. A function f W U � .0; 1/m ! Œ�1; 1� with U open is called .A; C /-mild up to
order r if it is C r and for all ˛ 2 Nm with j˛j � r and all x 2 U one has

jf .˛/.x/j � ˛Š.Aj˛jC /j˛j;

where ˛Š D
Qm
iD1 ˛i Š and j˛j D

Pm
iD1 ˛i as usual. Call a map f W U � .0; 1/m ! Œ�1; 1�n

.A; C /-mild up to order r if all of its component functions are.
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D 4.1.2 (Weakly mild functions). – Let A > 0 and C � 0 be real, and r > 0

be either an integer or C1. A function f W U � .0; 1/m ! Œ�1; 1� with U open is called
weakly .A; C /-mild up to order r if it is C r and for all ˛ 2 Nm with j˛j � r and all x 2 U
one has

jf .˛/.x/j �
˛Š.Aj˛jC /j˛j

x˛
;

where x˛ stands for
Qm
jD1 x

j̨

j . Call a map f W U � .0; 1/m ! Œ�1; 1�n weakly .A; C /-mild
up to order r if all of its component functions are.

We say mild (resp. weakly mild) for .A; C /-mild (resp. weakly .A; C /-mild) up to
order C1 for some A > 0 and some C � 0. By the theory of Gevrey functions [12], it
is known that a composition of mild functions is mild. Here we study some related results
about compositions, with proofs based on Faà di Bruno’s formula. (We do no effort to
control the bounds beyond what we need.) The next lemma is obvious by the chain rule for
derivation.

L 4.1.3. – Let r > 0 be an integer and let

f W U � .0; 1/m ! Œ�1; 1�

be .A; C /-mild up to order r . Then, for any � 2 .0; 1/m, the function

V ! Œ�1; 1� W x 7! f .� C x=ArCC1/

has C r -norm bounded by 1, where V � .0; 1/m is the open set consisting of x such that
� C x=ArCC1 WD .�1 C x1=Ar

CC1; : : : ; �m C xm=Ar
CC1/ lies in U .

Theorem 2.1 of [5] is a multi-variate form of Faà di Bruno’s formula for iterated derivatives
of compositions, which we now recall.

P 4.1.4 ([5], Theorem 2.1). – Let m � 1 and d � 1 be integers. Consider a
composition h D f ı g, with g W U � Rd ! V � Rm, f W V ! R and U and V open. Let
� 2 Nd be a nonzero multi-index. Write j�j D n, and suppose that f and g are C n. Then

h.�/

is equal to the sum over .�; s; k; `/ 2 I of the terms

(4.1) a�;s;k;`f
.�/

sY
jD1

�
g. j̀ /

�kj
with

(4.2) a�;s;k;` D
�ŠQs

jD1.kj Š/. j̀ Š/
jkj j

;

where 00 D 1, h.�/ and g. j̀ / are evaluated at u 2 U and f .�/ at g.u/, and where I consists
of .�; s; k; `/ with � 2 Nm, 1 � s � n, kj 2 Nm, j̀ 2 Nd , j D 1; : : : ; s, 0 < j�j � n,
0 < jkj j � n, 0 < j j̀ j � n, j̀ � j̀C1,

(4.3)
sX

jD1

kj D �; and
sX

jD1

jkj j j̀ D �:
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Here, j̀ � j̀C1 for j < s means that either j j̀ j < j j̀C1j, or, j j̀ j D j j̀C1j and j̀ comes
lexicographically before j̀C1. (For j D s, j̀ � j̀C1 is no condition.) Moreover, there exist
A > 0 and C � 0, depending only on m and d , such that

(4.4)
X

.�;s;k;`/2I

a�;s;k;` � .An
C /n:

Proof. – We only have to prove (4.4), since the other part is literally Theorem 2.1 of [5].
But (4.4) follows from

a�;s;k;` D
�ŠQs

jD1 kj Š. j̀ Š/
jkj j
� �Š � nn

and

#I � .nC 1/1CmCmnCnd ;

where the latter bound is obtained by letting the s, �i , kj i and j̀r for i D 1; : : : ; m,
j D 1; : : : ; n, and r D 1; : : : ; d run independently from 0 to n when estimating the number
of elements of I .

The main purpose of our notion of weakly mild functions is that composition with rth
power maps makes them mild up to order r , as follows.

P 4.1.5 (Composition with power maps). – Let A > 0 and C � 0 be real
numbers and let m > 0 be an integer. Let f W V ! Œ�1; 1� be a function on some open
V � .0; 1/m. Assume for each ˇ 2 Nm with jˇj � 1 that f .ˇ/ is weakly .A; C /-mild up to
order C1. Then, there is .A0; C 0/, depending only on m, A and C , such that for any integers
r > 0 and Li � r , the composition h D f ı g of f with

g W x 7! xL WD .x
L1
1 ; : : : ; xLmm /

on the open U � .0; 1/m consisting of x with xL 2 V , is .MA0; C 0/-mild up to order r , with
M D maxi Li .

Proof. – By Proposition 4.1.4 with d D m, we only have to estimateˇ̌̌̌
ˇ̌f .�/ sY

jD1

�
g. j̀ /

�kj ˇ̌̌̌ˇ̌
for � with 1 � j�j � r and .�; s; k; `/ as in Proposition 4.1.4. Fix � with 1 � j�j � r and
write j�j D n. If n D 1 the statement follows from the conditions on f .ˇ/ for ˇ with jˇj � 1.
So let us suppose n > 1. Fix s with 1 � s � n and � 2 Nm with j�j � n. Fix x in U . Choose
�0 and ˇ in Nm with �0Cˇ D � and jˇj D 1. (Near the end we will optimize the choice of ˇ,
depending on x.) By the weak .A; C /-mildness of f .ˇ/, we have

jf .�/.xL/j D j.f .ˇ//.�
0/.xL/j �

�0Š.Aj�0jC /j�
0j

xL�
0

;

where

L�0 D .Li�
0
i /i :
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We further estimate ˇ̌̌̌
ˇ̌ sY
jD1

�
g. j̀ /.x/

�kj ˇ̌̌̌ˇ̌ �
ˇ̌̌̌
ˇ̌ sY
jD1

M j j̀ j�jkj jx.L� j̀ /kj

ˇ̌̌̌
ˇ̌ ;

where kj and j̀ are as in (4.3) and where

.L � j̀ /kj D ..Li � j̀ i /kj i /i :

By (4.3) it follows thatQs
jD1M

j j̀ j�jkj jx.L� j̀ /kj

xL�
0

D M
Ps
jD1 j j̀ j�jkj jx�L�

0C
Ps
jD1.L� j̀ /kj

� M nxLˇ�
Ps
jD1 j̀ kj ;

where Lˇ D .Liˇi /i and similarly j̀kj D . j̀ ikj i /i . Since this last inequality holds for any
choice of ˇ with jˇj D 1 (and the corresponding �0), let us choose ˇ with ˇi1 D 1 where
i1 is such that xi1 D mini xi , where the minimum is over i with �i > 0. Now one has
j
Ps
jD1 j̀kj j � n by (4.3) and jLˇj D Li1 � r � n and thus

xLˇ�
Ps
jD1 j̀ kj � 1:

Putting together we findˇ̌̌̌
ˇ̌f .�/ sY

jD1

�
g. j̀ /

�kj ˇ̌̌̌ˇ̌ � �0Š.Aj�0jC /j�0jM n
� �Š.MAnC /n;

which finishes the proof.

4.2. a-b-m functions

We introduce the notions of bounded-monomial functions and of a-b-m functions in
Definition 4.2.1, resp. 4.2.2. Our motivation for the notion of a-b-m functions is threefold:
Firstly, a-b-m functions behave well in the sense that they are weakly mild whenever valued
in Œ�1; 1� (see Proposition 4.2.3), and even more holds (see Corollary 4.2.4). Secondly, even
better so than weakly mild functions, a-b-m functions can be rendered mild up to order r
by composing with power maps, see Proposition 4.2.6 (where the occurring roots behave
better for a-b-m functions than for weakly mild ones). Thirdly, using a preparation result
from Miller [20], we can rather easily obtain parameterizations with a-b-m maps. Some more
work is needed to make the parameterizations better (essentially with some extra control on
the first partial derivatives as in Theorem 4.3.1 (4)), so that they can be combined with the
power maps Result 4.2.6.

D 4.2.1 (bounded-monomial functions). – Let U be a subset of .0; 1/m.
A function b W U ! R with bounded range is called bounded-monomial if either b is
identically zero, or, b is of the form

b.x/ D x� WD

mY
iD1

x
�i
i

for some �i in R. A map U ! Rn is called bounded-monomial if all of its component
functions are.
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D 4.2.2 (a-b-m functions). – Let U be a subset of .0; 1/m. A function f WU ! R
is called a-b-m, in full analytic-bounded-monomial, if it is of the form

f .x/ D bj .x/F.b1.x/; : : : ; bs.x//

for some bounded-monomial map b W U ! Rs for some s and for some nonvanishing
analytic function F W V ! R, where V is an open neighborhood of b.U /, the topological
closure of b.U / in Rs , and where j lies in f1; : : : ; sg. We call the map b an associated
bounded-monomial map of f .

Finally, call a map f W U ! Rn a-b-m, with associated bounded-monomial map b, if
all its component functions are (namely, each fi is a-b-m, and, b is an associated bounded-
monomial map for each fi ).

P 4.2.3. – Let h W U � .0; 1/m ! R be an a-b-m function. Suppose that U is
open and that h.U / � Œ�1; 1�. Then the function h is weakly .A; C /-mild up to order C1 for
some A > 0 and some C � 0.

Proof. – Any function F W V ! Œ�1; 1� on an open V in .0; 1/n such that F is analytic
on some open neighborhood of V (the topological closure of V in Rn) is .A0; 0/-mild up
to order C1 for some A0 > 0, see e.g., [12]. Also, for any real S � 1 and any bounded-
monomial function b W U � .0; 1/m ! .0; S/ W x 7! x� with U open in .0; 1/m, the
function b=S is weakly .A1; C1/-mild up to order C1 for some A1 > 0 and C1 � 0. One
may for example take A1 D t t with t D max.2; j�1j; : : : ; j�mj/ and C1 D 0. The lemma
now follows from the fact that a composition f ı g is automatically weakly .A00; C 00/-mild
up to order r , whenever f W V ! R is .A; C /-mild up to order r and g W U ! V is weakly
.A0; C 0/-mild up to order r , with open setsU � .0; 1/d and V � .0; 1/m, and where moreover
A00 and C 00 depend only on A;A0; C; C 0; m; d . This fact is easy to see as follows. As in the
beginning of the proof for Proposition 4.1.5, by Proposition 4.1.4 we only have to estimate
a single term of the form ˇ̌̌̌

ˇ̌f .�/ sY
jD1

�
g. j̀ /

�kj ˇ̌̌̌ˇ̌ ;
for .�; s; k; `/ as in Proposition 4.1.4 and � with j�j � r . By the .A; C /-mildness of f up to
order r , and assuming A � 1, we have

jf .�/.x/j � �Š.Aj�jC /j�j � �Š.AnC /n:

By the weak .A0; C 0/-mildness of g up to order r we haveˇ̌̌̌
ˇ̌ sY
jD1

�
g. j̀ /.x/

�kj ˇ̌̌̌ˇ̌ �
ˇ̌̌̌
ˇ̌ sY
jD1

j̀ Š.A
0j j̀ j

C 0/j j̀ j�jkj j

x j̀ jkj j

ˇ̌̌̌
ˇ̌ ;

where kj and j̀ are as in Proposition 4.1.4. Now by (4.3) of Proposition 4.1.4, and assuming
A0 � 1, one has ˇ̌̌̌

ˇ̌ sY
jD1

�
g. j̀ /.x/

�kj ˇ̌̌̌ˇ̌ �
ˇ̌̌̌
ˇ�Š.A0nC 0/

P
j j j̀ j�jkj j

x
P
j j̀ jkj j

ˇ̌̌̌
ˇ �

ˇ̌̌̌
ˇ�Š.A0nC 0/nx�

ˇ̌̌̌
ˇ :

Putting together we find A00 and C 00 as desired.
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The a-b-m functions with an associated bounded-monomial map b such that moreover
b has bounded C 1-norm have particularly nice properties as illustrated by the next two
results.

C 4.2.4. – Let f W U � .0; 1/m ! R be an a-b-m function with an associated
bounded-monomial map b such that b has bounded C 1-norm. Then, for each j D 1; : : : ; m, the
function @f=@xj is a finite sum of a-b-m functions on U . Hence, there is " > 0 such that the
functions "f and "@f=@xj are weakly .A; C /-mild up to order C1 for some A > 0 and some
C � 0.

Proof. – The first statement follows from the definition of a-b-m functions, the chain rule
for derivation, and since the C 1-norm of b is bounded. In detail, write f D bj0F.b/ as in
Definition 4.2.2 where the map b W U ! Rs has boundedC 1-norm and j0 2 f1; : : : ; sg. Then

@f

@xj

equals the sum of

@bj0
@xj

F.b/ and the bj0
@F.b/

@b`

@b`

@xj
for ` D 1; : : : ; s:

Clearly .@bj0=@xj /F.b/ is a-b-m. For the other terms, one takes real S such that
j.@F=@b`/.b/j C 1 < S on U , and, one rewrites @F=@b`.b/ as the sum of S C @F=@b`.b/

with �S . Plugging this in gives bj0.@F=@b`.b/.@b`=@xj / as a sum of two terms which are
both a-b-m. The final part follows easily from Proposition 4.2.3.

Similarly to Proposition 4.1.5, cylindrical sets and their walls are rendered mild up to
order r after suitable composition with power maps, when the initial walls are nice enough,
see the following definitions and Proposition 4.2.6. Here, a-b-m functions show their essen-
tial use.

D 4.2.5 (Cylindrical sets and their walls). – A subset C � Rn is called a cylin-
drical set, if

C D fx 2 Rn j
n̂

iD1

˛i .x<i / �i1 xi �i2 ˇi .x<i /g

for some continuous functions ˛i and ˇi with ˛i < ˇi , x<i D .x1; : : : ; xi�1/, and with �i1
either D, <, or no condition, and with �i2 either < or no condition, with the conventions
that�i2 is no condition if�i1 is equality. If�i1 isD or< then we call ˛i a wall ofC . Likewise,
if �i2 is < then we also call ˇi a wall of C .

P 4.2.6. – Let U � .0; 1/m be a cylindrical set which is moreover open
in .0; 1/m. Suppose for each wall ˛ of U that ˛ is a-b-m with an associated bounded-monomial
map b such that moreover b has bounded C 1-norm. For any integer r > 0, write  r for the map
sending x 2 .0; 1/m to

 r .x/ D .x
rm

1 ; xr
m�1

2 ; : : : ; xrm/;

and write Ur for  �1r .U /. Then there exist A > 0 and C � 0, depending only on U , such that
Ur is an open cylindrical set whose walls are .rmA;C /-mild up to order r for each r > 0.
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Proof. – Let ˛ be a wall of U , say, bounding the i -th variable from below. Then the
corresponding wall ˛r of Ur (bounding the i -th variable from below) satisfies

(4.5) ˛r .x<i / D
rm�iC1

q
˛.xr

m

1 ; xr
m�1

2 ; : : : ; xr
m�iC2

i�1 /:

We show the existence of A0 > 0 and C 0 � 0 such that ˛r is .rmA0; C 0/-mild up to order r ,
whereA0 andC 0 depend only onU . If ˛ > " onU for some " > 0, then the existence ofA0 and
C 0 as desired follows easily from (4.5), Proposition 4.1.5 and the chain rule. If ˛ is identically
zero then so is ˛r and A0 and C 0 exist clearly. Since any a-b-m function f is the product of
a bounded-monomial function bj with an a-b-m function F.b/ with jF.b/j > " for some
" > 0, and since products behave well for mildness up to order r , it is enough to show the
existence of A0 > 0 and C 0 � 0 in the case that ˛ is itself bounded-monomial. That is, we
may suppose that there is � in Rm with

(4.6) ˛.z<i / D z
�

for z 2 U . For k � 1 let Vk be the set consisting of y 2 .0; 1/m with .yk1 ; : : : ; y
k
m/ in U and

let hk be the function
hk W Vk ! R W y 7! y�:

We claim that there exist constants S > 0, A0 > 0 and C0 � 0, depending only on U and �
(and not on k), such that for each ˇ 2 Nm with jˇj � 1 the function

jh
.ˇ/

k
j

S

is weakly .A0; C0/-mild. By (4.5) and (4.6), ˛r is the composition of hk with x 7! xL for
some k � 1 and some L in Nm with r � Li � rm�1 for each i . Thus, the existence of A0 and
C 0 now follows from the claim and Proposition 4.1.5. There is only left to prove the claim to
finish the proof. Since both ˛ and hk are monomials with exponent tuple� (but with different
domain), we find by differentiating

(4.7) jh
.�/

k
.y/j D c.�; k; �/j˛.�/.z/j1=k

with z D .yk1 ; : : : ; y
k
m/, and, with

(4.8) c.�; k; �/ < �Š.A1j�j
C1/j�j

for some A1 > 0 and C1 � 0 depending only on U and �. The claim now follows from the
bounds on j˛.�/.z/j for z 2 U and � 2 Nm that follow from the facts that ˛ is bounded-
monomial with bounded C 1-norm.

4.3. Pre-parameterization and the proof of Theorem 2.1.3

Let us fix some terminology for the rest of Section 4 (similar to convention 2.1.1). We
will work with certain reducts of Rpow

an , following [20]. For any language L on R and any
subfield K of R, let us denote by L

K the expansion of L by the functions

x 7!

(
x�; if x > 0;

0 otherwise,

for � 2 K. Let L an be the subanalytic language (in particular, the L an-definable subsets
of Rn are precisely the globally subanalytic subsets of Rn). Let F be a Weierstrass system
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and let L F be the corresponding language as in [20, Definition 2.1]. (The language L F is
always a reduct of L an.) By the field of exponents of F is meant the set of real r such that
.0; 1/ ! R W x 7! .1 C x/r is L F -definable; this set is moreover a field, see Remark 2.3.5
of [20]. Let K be a subfield of the field of exponents of F . From now on up to the end of
Section 4 we will work with the L

K
F -structure on R, definable will mean L

K
F -definable, and,

we say cell for a definable cylindrical set. Note that L
R
an is an example of such a language,

whose structure on R was denoted by Rpow
an above.

We can now state our pre-parameterization result, that generates C r -parameterizations
essentially by composing with power maps, and where possible parameter dependence is built
in via the triangularity property (3).

T 4.3.1 (Pre-parameterization). – Let X � .0; 1/n be definable, and suppose that
X is the graph of a definable function f W U ! .0; 1/n�m for some m � 0 and open set
U � .0; 1/m. Then there exist finitely many definable maps

'i W Ui ! X;

such that the following hold

(1)
S
i 'i .Ui / D X .

(2) Each Ui is an open cell in .0; 1/m.

(3) Each 'i is a triangular map, in the sense that for each j � m there is a unique map
…<j .Ui / ! …<j .X/ making a commutative diagram with 'i and the projection maps
X ! …<j .X/ D …<j .U / and Ui ! …<j .Ui /, with in both cases …<j the projection
on the first j � 1 coordinates.

(4) For each i , the map 'i and the walls ˛ of Ui are a-b-m with an associated bounded-
monomial map bi such that bi has bounded C 1-norm.

In a way, property (4) is a key new property for parameterizations, and it may be compared
with preparation results from [21] and Lipschitz continuity results from [18], [23] and [29].

Theorem 2.1.3 follows directly from Theorem 4.3.1, Propositions 4.1.5, 4.2.6, Corol-
lary 4.2.4 and Lemma 4.1.3, as follows.

Proof of Theorem 2.1.3. – Up to finite partitioning and up to transforming T if neces-
sary, we may suppose that X D f.t; x/ j t 2 T; x 2 Xtg equals the graph of a function
f W U � T � .0; 1/m ! .0; 1/n�m where U is an open cell in .0; 1/kCm. Apply Theorem 4.3.1
to X to find maps 'i on cells Ui � .0; 1/kCm. For any integer r > 0 write Ui;r for the set
of .t; x/ 2 .0; 1/kCm such that

 r .t; x/ WD .t
rkCm

1 ; : : : ; t r
1Cm

k ; xr
m

1 ; : : : ; xrm/

lies in Ui and write 'i;r W Ui;r ! X for the composition of 'i with  r . Now it follows from
Propositions 4.1.5, 4.2.6, Corollary 4.2.4, Lemma 4.1.3 and by transforming the T -space
back into the original form using property (3), that there are c and d , and for each r definable
functions �r;i;t;0 W Vr;i;t;0 � .0; 1/m ! Xt with i D 1; : : : ; crd , such that Vr;i;t;0 is an open
cell whose walls have C r -norm at most 1 and the functions �r;i;t;0 have C r -norm at most
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one. By finally composing with the obvious triangular map, namely, if the i th variable runs
between the walls ˛i and ˇi in Vi;r;t;0 then one composes with

.0; 1/m ! Vr;i;t;0 W z 7! .˛i C .ˇi � ˛i /zi /i ;

one gets the maps �r;i;t with domain .0; 1/m as desired by Theorem 2.1.3.

The remainder of Section 4 is devoted to the proof of Theorem 4.3.1.

4.4. The preparation result from [20] and proof of Theorem 4.3.1

We recall the preparation result from [20] for definable functions, where definable means
L
K
F -definable as convened in Section 4.3. This preparation result is crucial in the proof of

Theorem 4.3.1.

Let C � Rn be a cell. Write …<n W Rn ! Rn�1 for the projection sending x in Rn

to x<n D .x1; : : : ; xn�1/.

D 4.4.1 (Prepared with center). – Let � W …<n.C / ! R be a contin-
uous, definable function whose graph is either disjoint from C , or, contained in C n C ,
where C stands for the topological closure of C in Rn. Furthermore, suppose that either
� D 0 on …<n.C /, or �.x<n/ � xn for x 2 C , meaning that there is S > 1 such that
xn=S � �.x<n/ � Sxn for all x 2 C . Then � is called a center for C . A definable function
f W C ! R with bounded range is called prepared with center � if f can be written as

f .x/ D bj .x/F.b.x//

with some nonvanishing analytic function F W V ! R, where V is an open neighborhood
of b.C /, the topological closure of b.C / in Rs , and where b W C ! Rs is a map with bounded
range whose component functions bi have the form

x 7! ai .x<n/jxn � �.x<n/j
ri

with ri 2 K and where ai W …<n.C /! R is definable, and where j lies in f1; : : : ; sg.

We call the map b an associated bounded range map for f . Say that a definable map
f W C ! Rn for n � 1 is prepared with center � , and associated bounded range map b,
if all its component functions are (namely, each fi is prepared with center � and associated
bounded range map b.)

Note that the a-b-m functions of Definition 4.2.2 are much more specific than the
prepared functions with center � of Definition 4.4.1. Indeed, a-b-m functions are, in a way,
prepared in each variable instead of in one variable only and moreover with center(s) zero.

P 4.4.2 (Preparation of definable functions, [20, Main Theorem]).

Let f W X � Rn ! RN be a definable map on a definable set X . Suppose that the range
of f is bounded. Then there exists a finite partition of X into definable cells Ci with some
center �i such that fjCi is prepared with center �i for each i .

We are now ready to prove Theorem 4.3.1.
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Proof of Theorem 4.3.1. – We proceed by induction on m, the case m D 0 being trivial.
Suppose m � 1. By o-minimal cell decomposition (see [9, Chapter 3]), we can easily find
definable maps 'i W Ui ! X satisfying (1), (2) and (3). By Proposition 4.4.2 and up to
further finite partitioning, we may furthermore suppose for each i that Ui has a center �i
and that the maps 'i are prepared with center �i and an associated bounded range map bi .
We may even suppose that �i D 0 on Ui , up to translating in the xm variable. Indeed, by
Definition 4.4.1 there is S > 0 such that j�i j C 1 < S on Ui , and we may suppose (up to
further finite partitioning) that either xm � �i > 0, or, xm � �i < 0 on Ui . In the case that
xm � �i > 0 on Ui (the other case is similar), one replaces Ui by the cell

QUi WD fx 2 .0; 1/
m
j .x<m; Sxm C �i .x<m// 2 Uig

and 'i by
Q'i W QUi ! X W x 7! 'i .x<m; Sxm C �i .x<m//:

By a classical technique (with inverse functions) we will ensure moreover that bi is C 1 and
that j@bi;j =@xmj � 1 for each component function bi;j of bi . Up to partitioning Ui into
finitely many definable pieces and neglecting pieces of lower dimension by induction on m,
we may suppose that bi isC 1 onUi and that there is j such that j@bi;j =@xmj is maximal onU ,
in the sense that j@bi;j .x/=@xmj � j@bi;j 0.x/=@xmj on U for any j 0. Similarly, for this j we
may furthermore suppose that either j@bi;j =@xmj � 1 on Ui , or, that j@bi;j =@xmj > 1 on Ui .
In the first case, Ui and 'i are as desired. In the second case, we may, up to finite partitioning
and using o-minimality as before, suppose that for each x<m D .x1; : : : ; xm�1/ the function
sending xm to bi;j .x<m; xm/ is injective. Let QUi be the image of Ui under the map sending x
to .x<m; bi;j .x//, and let Q'i W QUi ! X be the composition of 'i with the inverse function
of the map Ui ! QUi . Now Q'i is as desired, by the chain rule and the special form of bi;j .
In particular, Q'i is prepared with center zero and associated bounded-range map Qbi with
j@ Qbi;j =@xmj � 1 for each component function Qbi;j of Qbi .

By the flexibility in Definition 4.4.1 for choosing the associated bounded range map, we
may from now on suppose that we have definable maps 'i satisfying (1), (2), (3), that the
maps 'i are prepared with center 0 and associated bounded range map bi such that moreover

jbi;j j < 1 � "; and j
@bi;j

@xm
j < 1 � "

for each component function bi;j of bi and some " > 0.
We will now construct a finite collection of definable maps

'i` W Ui` ! X

satisfying Properties (1), (2), (3), and (4), using the data we have so far. For each wall ˛ of Ui
bounding xm, and with h being either bi or @bi=@xm, let h˛ be the map

(4.9) h˛ W …<m.Ui /! .�1; 1/s W x<m 7! lim
xm!˛.x<m/

h.x<m; xm/;

where …<m.Ui / is the image of Ui under the coordinate projection …<m sending x to x<m.
This limit always exists by Definition 4.4.1 and the form of h˛. Let G i be the collection of
functions on …<m.Ui / consisting of the component functions of the maps h˛ from (4.9)
and the walls ˛ of Ui bounding xm. Up to partitioning Ui further we may suppose for each
g 2 G i that either g is constant, or, 0 < jgj < 1 on Ui (or both). Consider the map Fi
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whose component functions are the functions jgj for those g in G i which are nonconstant.
Apply the induction hypothesis to the map Fi instead of f to find a finite collection of maps
 i` W Vi` ! Graph.Fi / satisfying properties (1), (2), (3), and (4), with Graph.Fi / in the role
of X , and with associated bounded-monomial maps ci` . Plugging the newly obtained maps
 i` in the previously obtained maps 'i we get Properties (1), (2), (3), and (4) for X . With
more detail, let Ui` be the cell

fx 2 .0; 1/m j . i`.x<m/<m; xm/ 2 Uig

and let 'i` W Ui` ! X be the map

x 7! 'i . i`.x<m/<m; xm/:

By the above application of the induction hypothesis and by construction, the function

x 7! bi . i`.x<m/<m; xm/

is a-b-m with an associated bounded-monomial map di` with bounded C 1-norm. Let bi` be
the map .ci`; di`/. Then the maps 'i` satisfy (1), (2), (3) and (4) with associated bounded-
monomial maps bi`. This finishes the proof of Theorem 4.3.1.

R 4.4.3. – To address the mentioned question of [3, below Remark 3.8] it seems
useful to bound the number of maps 'i in Theorem 4.3.1 (in the case that X is semi-
algebraic) in terms of the semi-algebraic complexity ofX . It also seems interesting to control
the degree d of the polynomial crd of Theorem 2.1.3 in terms of m. Also note that the
maps�r;i;t of Theorem 2.1.3 are analytic on their domain for each r; i; t (by their construction
based on a-b-m maps), but, in general, they may not extend to an analytic map on an open
neighborhood of the closed box Œ0; 1�m (indeed, a-b-m maps don’t extend in general).

5. The proof of the quasi-parameterization theorem

In this section we prove Theorem 2.2.3. First of all, however, we require some general
results about definable families of holomorphic functions. The definability here is with
respect to an arbitrary polynomially bounded o-minimal expansion of the real field, which
we now fix. Let us recall the following definition from Subsection 2.2, from where we also
recall that �.R/ denotes the (open) disk in C of radius R and centered at the origin.

D 5.1. – A definable family ƒ D fFt W t 2 T g is called an .R;m;K/-family,
where R, K are positive real numbers and m is a positive integer, if for each t 2 T , the
function Ft W �.R/m ! C is holomorphic and for all z 2 �.R/m, jFt .z/j � K.

Let us first observe that for such a family ƒ, it follows from the Cauchy inequalities
that we have the following bounds on the Taylor coefficients of each Ft at 0 2 Cm (where
˛Š WD ˛1Š � � �˛mŠ for ˛ D h˛1; : : : ; ˛mi 2 Nm).

5.1.1. For all ˛ 2 Nm and all t 2 T , jF
.˛/
t .0/j

˛Š
�

K

Rj˛j
.

(For all general results from the theory of functions of several complex variables we refer
the reader to the first chapter of [14].)

In particular, if R > 1 then jF
.˛/
t .0/j

˛Š
! 0 as j˛j ! 1 and so for each t 2 T there exists

some Mt 2 N such that

4 e SÉRIE – TOME 53 – 2020 – No 1



PARAMETERIZATIONS AND DIOPHANTINE APPLICATIONS 29

5.1.2. For all ˛ 2 Nm, jF
.˛/
t .0/j

˛Š
� maxf jF

.˛/
t .0/j

˛Š
W ˛ 2 Nm; j˛j �Mtg.

The crucial uniformity result, from which the quasi-parameterization theorem will follow,
is thatMt may be chosen to be independent of t . This in turn will follow from the maximum
modulus theorem and the following general result.

L 5.2. – Let 1 < r < R, 0 < � � 1
2

and let f�t W t 2 T g be a definable family of
functions from .0; R/ to .0; R/. Then there exists " 2 .0; �/ such that for all t 2 T , there exists
yt 2 .r; R/ such that �t .yt � "/ � 1

2
�t .yt /.

Proof. – Suppose not. Then there exists a function � W .0; �/! T , which by the principle
of definable choice we may take to be definable, such that

5.2.1. For all x 2 .0; �/ and all y 2 .r; R/, ��.x/.y � x/ <
1
2
��.x/.y/.

Pick some  2 .r; R/ and consider the definable function x 7! ��.x/./ for x 2 .0; �/.
It follows from polynomial boundedness that there exist a positive integer N and � 2 .0; �/
such that

5.2.2. For all x 2 .0; �/, ��.x/./ > x
N .

Now let k be a positive integer and set x0 WD
R�
2k

, so that x0 2 .0; �/ for large enough k.
By applying 5.2.1 successively with x D x0 and y D  C x0; : : : ;  C kx0 we see that
0 < ��.x0/./ <

1
2
��.x0/. C x0/ < � � � < .

1
2
/k��.x0/. C kx0/ < .

1
2
/kR.

So by 5.2.2 we obtain .R�
2k
/N D xN0 < ��.x0/./ < .1

2
/kR, which is the required

contradiction if k is sufficiently large.

T 5.3. – Let ƒ D fFt W t 2 T g be an .R;m;K/-family with R > 1. Then there
exists M DM.ƒ/ 2 N such that for all t 2 T and all ˛ 2 Nm,

jF
.˛/
t .0/j

˛Š
� maxf

jF
.˛/
t .0/j

˛Š
W ˛ 2 Nm; j˛j �M g:

Proof. – Since the conclusion is trivially true for those t 2 T such that Ft � 0 (no matter
how M is chosen) we may assume that no Ft is identically zero.

For t 2 T define �t W .0; R/! .0; R/ by

(5.3.1) �t .y/ WD
R

K
supfjFt .z/j W z 2 �.y/mg:

Now let r WD R
3
4 , � D minf1

2
; R

3
4 �R

2
3 g and apply 5.2 to obtain " 2 .0; �/ such that
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5.3.2. For all t 2 T , there exists yt 2 .r; R/ such that �t .yt � "/ � 1
2
�t .yt /.

Now choose D 2 N so that

.1 �
"

R
/D <

1

4
, and(5.3.3)

5.D C 1/m � 2R
D
3 :(5.3.4)

We show thatM WD 2D satisfies the required conclusion. So fix some arbitrary t 2 T and

let Bt WD maxf jF
.˛/
t .0/j

˛Š
W j˛j � Dg. (The ˛’s range over Nm for the rest of this proof.) It is

clearly sufficient to show that

(�) for all ˛ with j˛j � 2D we have
jF
.˛/
t .0/j

˛Š
� Bt :

To this end we consider the truncated Taylor expansion of Ft , namely

Pt .z/ WD
X
j˛j�D

F
.˛/
t .0/

˛Š
z˛:

Clearly we have

(5.3.5) for all z 2 �.R/m; jPt .z/j � .D C 1/mBtRD :

Now choose w D hw1; : : : ; wmi 2 �.R/m with jwi j D yt � " and jFt .w/j D K
R
�t .yt � "/

(which is possible by 5.3.1 and the maximum modulus theorem), and let �i WD
wi
yt�"

so that
j�i j D 1 for i D 1; : : : ; m. Consider the function Ht W �.R/! C given by

Ht .u/ WD
Ft .u�/ � Pt .u�/

uDC1
:

This is clearly a well-defined analytic function and by the maximum modulus theorem there
exists ut 2 �.R/ with jut j D yt such that jHt .yt � "/j � jHt .ut /j. Thus

jFt ..yt � "/�/ � Pt ..yt � "/�/j � .
yt � "

yt
/DC1jFt ..ut�/ � Pt ..ut�/j:

However, by 5.3.3, .yt�"
yt
/DC1 � .1� "

R
/DC1 < 1

4
so, upon recalling that w D .yt � "/� and

using 5.3.5, we see that

(5.3.6) jFt .w/j �
1

4
jFt .ut�/j C

5

4
.D C 1/mBtR

D :

But jFt .w/j D K
R
�t .yt �"/ �

K
2R
�t .yt / by 5.3.2, and since jut�j D yt we obtain from this

and 5.3.1 that jFt .w/j � 1
2
jFt .ut�/j. Putting this into 5.3.6 we obtain

(5.3.7) jFt .w/j �
5

2
.D C 1/mBtR

D :

Now, with a view to proving (*), let j˛j � 2D. Then by applying the Cauchy inequalities
in the polydisk �.yt � "/m and using 5.3.1 and 5.3.7 we obtain

jF
.˛/
t .0/j

˛Š
�
K

R
�t .yt � "/ � .yt � "/

�j˛j
D jFt .w/j.yt � "/

�j˛j
�
5

2
.DC1/mBtR

D.yt � "/
�j˛j:

But yt � " � r � � � R
2
3 (by the definitions of r and �), so by 5.3.4

jF
.˛/
t .0/j

˛Š
�
5

2
.D C 1/mBtR

D
� .R

2
3 /�2D D

5

2
.D C 1/mR

�D
3 Bt � Bt
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as required.

It follows immediately from 5.3 that the function �ƒ W T ! R given by

(5.3.8) �ƒ.t/ WD maxf
jF
.˛/
t .0/j

˛Š
W ˛ 2 Nmg

is (well-defined and) definable. It also determines the topology on ƒ in the following sense.

T 5.4. – Let ƒ be an .R;m;K/-family with R > 1 as above and let r be a real
number satisfying 0 < r < R. Then there exists a positive real number Bƒ.r/ such that for all
t 2 T and all z 2 �.r/m we have jFt .z/j � Bƒ.r/ � �ƒ.t/.

Proof. – Choose a real number r0 such that maxf1; rg < r0 < R and for each t 2 T define
Gt W �.

R
r0
/m ! C by Gt .z/ WD Ft .r0z/. Then ƒ� WD fGt W t 2 T g is an . R

r0
; m;K/-family

and since R
r0
> 1, we may apply 5.3 to it and obtain some M.ƒ�/ 2 N such that �ƒ�.t/ D

maxf jG
.˛/
t .0/j

˛Š
W ˛ 2 Nm; j˛j � M.ƒ�g: Fix t 2 T . Then since G.˛/t .0/ D r

j˛j
0 F

.˛/
t .0/ (for all

˛ 2 Nm) it follows that for all z 2 �.r/m we have that jFt .z/j D j
P
˛2Nm r

�j˛j
0 �

G
.˛/
t .0/

˛Š
�z˛j �

�ƒ�.t/ � .
r0
r0�r

/m � �ƒ.t/ � r
M.ƒ�/
0 � . r0

r0�r
/m, which gives the required result upon setting

Bƒ.r/ WD r
M.ƒ�/
0 � . r0

r0�r
/m.

The topology we are referring to here is determined by the metrics ır (0 < r < R) where,
for any two bounded holomorphic functions F;G W �.R/m ! C, we define ır .F;G/ WD
supfjF.z/ � G.z/j W z 2 �.r/mg. It turns out that if ƒ is any .R;m;K/-family (regarded
here as a set, rather than an indexed set, of functions) and if 0 < r; r 0 < R, then the metric
spaces .ƒ; ır / and .ƒ; ır 0/ are quasi-isometric via the identity function onƒ. (Note that this
is certainly not true in general for families ofK-bounded holomorphic functions on�.R/m,
e.g., consider, for R D 2;m D K D 1, the family f0g [ f. z

2
/q W q 2 Ng.) In fact, as we now

explain, they are quasi-isometric to a bounded subset of CN for some sufficiently large N
(depending only on ƒ) endowed with the metric induced by the usual sup-metric on CN :
khw1; : : : ; wN ik WD maxfjwi j W 1 � i � N g.

D 5.5. – We say that an .R;m;K/-family ƒ D fFt W t 2 T g is well-indexed if,
for some N 2 N, T is a bounded subset of CN and for each r with 0 < r < R, there exist
positive real numbers cr , Cr such that for all t; t 0 2 T we have crır .Ft ; Ft 0/ � kt � t 0k �
Crır .Ft ; Ft 0/. That is, the map t 7! Ft is a quasi-isometry from the metric space hT; k�ki to
the metric space hƒ; ıri.

T 5.6. – Let ƒ D fFt W t 2 T g be an .R;m;K/-family with R > 1. Then there
exists a well-indexed .R;m;K/-family ƒ0 D fGt W t 2 T �g such that ƒ D ƒ0 as sets. Further,
dim.T �/ � dim.T /.

Proof. – Consider the .R;m; 2K/-family� WD fFt�Ft 0 W ht; t 0i 2 T 2g and letM.�/ 2 N
be as given by 5.3 (with� in place ofƒ). We take ourN D N.ƒ/ to be the cardinality of the
set f˛ 2 Nm W j˛j �M.�/g.

Define the map ! W T ! CN by !.t/ WD hF
.˛/
t .0/

˛Š
W ˛ 2 Nm; j˛j � M.�/i and

set T � WD !ŒT � (so obviously dim.T �/ � dim.T /) . If t; t 0 2 T and !.t/ D !.t 0/ then
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F
.˛/
t .0/

˛Š
D

F
.˛/

t0
.0/

˛Š
holds for all ˛ with j˛j � M.�/ and hence, by 5.3 (and the linearity

of the derivatives), it holds for all ˛ 2 Nm. Thus Ft D Ft 0 . This does not necessarily
imply that t D t 0 but, by the principle of definable choice, we may choose a definable right
inverse !�1 W T � ! T of ! and, setting Gt D F!�1.t/ (for t 2 T �), we have that,
as a set, ƒ D fGt W t 2 T �g. We complete the proof by showing that the .R;m;K/-family
fGt W t 2 T

�g is well-indexed.

Firstly, by 5.1.1 we have that T � � �.K/
N

, so T � is a bounded subset of CN . For the
quasi-isometric inequalities consider some r 2 .0; R/.

We may take Cr D maxf1; r�M.�/g. Indeed, suppose t; t 0 2 T �. Let s D !�1.t/ and
s0 D !�1.t 0/. Then by the Cauchy inequalities applied to the function .Fs � Fs0/ restricted
to the disk �.r/m, we have that for all ˛ 2 Nm, j.Fs�Fs0 /

˛.0/j

˛Š
�

ır .Fs ;Fs0 /

r j˛j
. In particular,

kt � t 0k D k!.s/ � !.s0/k � Crır .Fs; Fs0/ D Crır .Gt ; Gt 0/.
Finally, we take cr to be B�.r/�1, where B�.r/ is as in 5.4 (with � in place of ƒ).

Then, with t; t 0; s; s0 as above, and z 2 �.r/m we have by 5.3 and 5.4, j.Fs � Fs0/.z/j �
B�.r/ � ��.hs; s

0i/ D B�.r/ � k!.s/� !.s
0/k D B�.r/ � kt � t

0k. So kt � t 0k � crır .Gt ; Gt 0/,
as required.

This result suggests a natural way of compactifying definable .R;m;K/-families. Let
ƒ D fFt W t 2 T g be such a family with R > 1 and assume, as now we may, that it is
well-indexed (with T a bounded subset of CN , say). We wish to extendƒ to a familyƒ well-
indexed by the closure T of T in CN . So for t 2 T choose a Cauchy sequence ht .i/ W i 2 Ni
in T converging to t (in the space hCN ; k�ki). Then by the quasi-isometric property of the
indexing it follows that hFt.i/ W i 2 Ni is a Cauchy sequence in hƒ; ıri for every r 2 .0; R/.
So by Weierstrass’ theorem on uniformly convergent sequences, there exists a holomorphic
function Ft W �.R/m ! C such that, for each r 2 .0; R/, ır .Ft.i/ ; Ft / ! 0 as i ! 1.
It is easy to check that Ft depends only on t (and not on the particular choice of Cauchy
sequence) and that our notation is consistent if t happens to lie in T . We have the following

T 5.7. – The collection ƒ WD fFt W t 2 T g as defined above is a well-indexed
.R;m;K/-family.

Proof. – Everything follows from elementary facts on convergence (and we may take the
same constants cr , Cr for the quasi-isometric inequalities) apart from the definability of ƒ.
To see that this holds too, let

graph.ƒ/ WD fht; z; wi 2 CNCmC1 W t 2 T; z 2 �.R/m; Ft .z/ D wg:

Then graph.ƒ/ is a definable subset of CNCmC1 (this being the definition of what it means
for ƒ to be a definable family). We complete the proof by showing that

(�) for all ht; z; wi 2 CNCmC1, t 2 T ; z 2 �.R/m and Ft .z/ D w if and only if z 2 �.R/m

and ht; z; wi 2 graph.ƒ/.

So let ht; z; wi 2 CNCmC1.
Suppose first that t 2 T ; z 2 �.R/m and Ft .z/ D w. Choose a sequence ht .i/ W i 2 Ni in T

converging to t . Choose r so that jzj < r < R. Then by the construction of Ft we have that
ır .Ft.i/ ; Ft /! 0 as i !1. In particular, jFt.i/.z/�Ft .z/j ! 0 as i !1, i.e.,Ft.i/.z/! w
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as i !1. So ht .i/; z; Ft.i/.z/i ! ht; z; wi as i !1. Since ht .i/; z; Ft.i/.z/i 2 graph.ƒ/ for
each i 2 N, it follows that ht; z; wi 2 graph.ƒ/ as required.

For the converse, suppose that z 2 �.R/ and that ht; z; wi 2 graph.ƒ/. Then certainly
t 2 T and we must show that Ft .z/ D w, thereby completing the proof of (*).

Let hht .i/; z.i/; wi i W i 2 Ni be a sequence in graph.ƒ/ converging to ht; z; wi. Then
z.i/ ! z as i ! 1 and since z 2 �.R/, we may choose r < R so that z 2 �.r/m and
z.i/ 2 �.r/m for each i 2 N. Since t .i/ ! t as i !1, it follows from the construction of Ft
that ır .Ft.i/ ; Ft /! 0 as i !1. In particular, jFt.i/.z

.i//�Ft .z
.i//j ! 0 as i !1. But by

the definition of graph.ƒ/, Ft.i/.z
.i// D wi for all i 2 N and hence jwi � Ft .z.i//j ! 0

as i ! 1. However, Ft .z.i// ! Ft .z/ as i ! 1 (because Ft is certainly continuous
on �.r/m) and hence wi ! Ft .z/ as i ! 1. Since wi ! w as i ! 1 it now follows
that w D Ft .z/ as required.

Having shown how to compactify .R;m;K/-families, we now projectivize them.

T 5.8. – Let ƒ D fFt W t 2 T g be an .R;m;K/-family with R > 1. Assume that
for no t 2 T does Ft vanish identically. LetR0 satisfy 1 < R0 < R. Then there exists a positive
real number K0 and an .R0; m;K0/-family ƒ� D fGt W t 2 T �g such that

5.8.1. ƒ� is well-indexed and T � is closed in its ambient space CN ;

5.8.2. For every t 2 T , there exists At > 0 and t� 2 T � such that Gt� D At � Ft � �.R0/
m;

5.8.3. The (real) dimension of T � is at most that of T ;

5.8.4. For no t 2 T � is Gt identically zero.

Proof. – We consider the .R0; m;K0/-family f Ft
�ƒ.t/

� �.R0/m W t 2 T g (cf. 5.3.8), where
K0 D Bƒ.R0/ (cf. 5.4). Using 5.6, let ƒ� D fGt W t 2 T �g be a well-indexing of it. Then
dim.T �/ � dim.T /. We set T � WD T � and ƒ� WD ƒ� as in 5.7. Then 5.8.1-3 are clear.
For 5.8.4, let us first note that if t 2 T � then for some s 2 T , Gt D Fs

�ƒ.s/
� �.R0/m and

hence there exists ˛ 2 Nm with j˛j � M.ƒ/ such that jG
.˛/
t .0/j

˛Š
D 1 (see 5.3 and 5.3.8). Now

let t� 2 T �. We must show thatGt� does not vanish identically. For this, choose t 2 T � such
that kt�t�k< c1

2
so that ı1.Gt ; Gt�/ <

1
2

(by 5.5 with r D 1). It now follows from the Cauchy
inequalities applied to the function Gt � Gt� restricted to the unit polydisk �.1/m, that for

all ˛ 2 Nm we have
jG
.˛/
t .0/�G

.˛/

t�
.0/j

˛Š
< 1

2
. So choosing ˛ with jG

.˛/
t .0/j

˛Š
D 1 as above, we see

that
jG
.˛/

t�
.0/j

˛Š
> 1

2
. In particular, Gt� does not vanish identically.

R. – The hypothesis that R0 < R is necessary here: the reader may easily verify
that for the .2; 1; 1/-family ƒ D fgt W t 2 Œ0; 1

2
/g where gt .z/ D 1�2t

1�tz
, and for each

given K0 > 0, there is no .2; 1;K0/-family ƒ� satisfying 5.8.1-4.

We are almost ready for the proof of the quasi-parameterization theorem (2.2.3). This
will proceed by induction on the dimension of the given family fXt W t 2 T g, i.e., the
(minimum, real) dimension of the indexing set T . The inductive step will involve a use of
the Weierstrass Preparation Theorem (or, rather, a modification of the argument used in the
complex analytic proof of the Weierstrass Preparation Theorem) and, as usual, one has first
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to make a transformation so that the function being prepared is regular in one of its variables.
Furthermore, in our case the transformation will have to work uniformly for all members of
a certain definable family of functions and for all values of the other variables. Unfortunately,
the usual linear change of variables does not have this property. Instead we use a variation of
the transformation used by Denef and van den Dries in their proof of quantifier elimination
for the structure Ran (see [6]). The result we require is contained in the following

T 5.9. – Let ƒ D fFt W t 2 T g be an .R;m;K/-family with R > 1 (and, for
non-triviality, with m � 2) such that for no t 2 T does Ft vanish identically. Let R0 and R00 be
real numbers satisfying 1 < R00 < R0 < R. Then there exist positive integers D1; : : : ;Dm�1
and a positive real number � such that the bijection

� W Cm ! Cm W z D hz1; : : : ; zmi 7! hz1 C �zD1m ; : : : ; zm�1 C �z
Dm�1
m ; zmi

satisfies

5.9.1. �Œ�.R0/
m
� � �.R/m,

5.9.2. ��1Œ�.1/
m
� � �.R00/m, and

5.9.3. For each t 2 T and z0 2 �.R0/m�1 the function zm 7! Ft ı�.z
0; zm/ (for zm 2 �.R0/)

does not vanish identically in zm.

This will follow from the following general

L 5.10. – Let m � 1 and suppose that X D fXt W t 2 T g is a definable family
of subsets of Rm such that for all t 2 T , dim.Xt / < m. Then there exist positive integers
D1; : : : ;Dm�1 such that for all t 2 T , all � > 0 and all w1; : : : ; wm�1 2 R, there exists
" D ".t; �; w1; : : : ; wm�1/ > 0 such that

Xt \ fhw1 C �x
D1 ; : : : ; wm�1 C �x

Dm�1 ; xi 2 Rm W 0 < x < "g D ;:

Proof. – Induction on m. For m D 1, each Xt is (uniformly) finite. So obviously we can
find, for each t 2 T , an " D ".t/ > 0 such that Xt \ .0; "/ D ;, which is the required
conclusion in this case.

Now let’s assume that the lemma holds for somem � 1 and that fXt W t 2 T g is a definable
family of subsets of RmC1 each having dimension at most m.

For t 2 T define St WD fs 2 Rm W fy 2 R W hy; si 2 Xtg is infiniteg. Then
fSt W t 2 T g is a definable family of subsets of Rm and clearly dim.St / < m for each
t 2 T . So we may apply the inductive hypothesis to this family and obtain (with a small
shift in notation) positive integers D2; : : : ;Dm such that for all t 2 T , all � > 0 and all
w2; : : : ; wm 2 R, there exists " D ".t; �; w2; : : : ; wm/ > 0 such that for all x 2 .0; "/, we have
that hw2 C �xD2 ; : : : ; wm C �xDm ; xi … St , i.e., there are at most finitely many y 2 R such
that hy;w2 C �xD2 ; : : : ; wm C �xDm ; xi 2 Xt .

Now, by the principle of definable choice, there exists a definable function

H W T � .0;1/ � Rm � R! .0; 1�

such that for all t 2 T , all � 2 R, all w 2 Rm and all x 2 R, its value H.t; �; w; x/ is some
y 2 .0; 1/ such that for no u 2 .0; y/ do we have hw1 C �u;w2 C �xD2 ; : : : ; wm C �xDm ; xi 2 Xt ,
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if such a y exists (and is, say, 1 otherwise). Notice that by the discussion above, such a y does
indeed exist whenever x 2 .0; ".t; �; w2; : : : ; wm//.

We now apply polynomial boundedness to obtain a positive integer D1 such that for all
t 2 T , all � > 0 and all w D hw1; : : : ; wmi 2 Rm, there exists  D .t; �; w/ > 0, which
we may assume is strictly less than ".t; �; w2; : : : ; wm/, such that for all x 2 .0; /, we have
H.t; �; w; x/ > xD1 . So if x 2 .0; /, then x 2 .0; "/ and hence for all u 2 .0;H.t; �; w; x//
we have that hw1C�u;w2C�xD2 ; : : : ; wmC�xDm ; xi … Xt . But xD1 2 .0;H.t; �; w; x// so
hw1C �x

D1 ; w2C �x
D2 ; : : : ; wmC �x

Dm ; xi … Xt . Since this holds for arbitrary x 2 .0; /,
we are done (upon taking ".t; �; w1; : : : ; wm/ WD .t; �; w/).

Proof of 5.9. – For t belonging to T and u to .�R;R/m, let Xht;ui be defined as
fw 2 .�R0; R0/m W w C ui 2 �.R/m and Ft .w C ui/ D 0g. Then dim.Xht;ui/ < m

because if U is some non-empty, open subset of .�R0; R0/m such that w C ui 2 �.R/m

and Ft .w C ui/ D 0 for all w 2 U , then Ft , being holomorphic, would vanish identically
on�.R/m which is contrary to hypothesis. So we may apply 5.10 to the family X WD fXht;ui W

ht; ui 2 T � .�R;R/mg and obtain positive integers D1; : : : ;Dm�1 with the property stated
in the conclusion of 5.10. Now choose � so small that the resulting map � satisfies 5.9.1 and
5.9.2. (The inverse of � is given by ��1.z1; : : : ; zm/ D hz1 � �z

D1
m ; : : : ; zm�1 � �z

Dm�1
m ; zmi.)

To verify 5.9.3, let t 2 T and let z0 D hz1; : : : ; zm�1i 2 �.R0/m�1. If Ft ı �.z0; zm/ D 0

for all zm 2 �.R0/ then, in particular, hz1 C �xD1 ; : : : ; zm�1 C �xDm�1 ; xi 2 �.R0/m and
Ft .z1C�x

D1 ; : : : ; zm�1C�x
Dm�1 ; x/ D 0 for all sufficiently small positive x 2 R. However,

if the real and imaginary parts of zi are, respectively, ai and bi (for i D 1; : : : ; m � 1), this
implies that ha1 C �xD1 ; : : : ; am�1 C �xDm�1 ; xi 2 Xht;bi for all sufficiently small x > 0,
where b WD hb1; : : : ; bm�1; 0i. But this clearly contradicts the conclusion of 5.10.

We now come to the proof of the quasi-parameterization theorem (2.2.3), so definability
is now, and henceforth, with respect to a structure as described in 2.2.1.

Recall that we are given a definable family X D fXs W s 2 Sg of subsets of Œ�1; 1�n each
of dimension at most m, where m < n. We assume that the indexing set S has been chosen
of minimal dimension and we denote this dimension by indim.X /. We are required to find
some R > 1;K > 0, a positive integer d , and an .R;mC 1;K/-family ƒ�, each element of
which is a monic polynomial of degree at most d in its first variable, such that

(�) for all s 2 S , there exists F 2 ƒ� such that Xs � fx D hx1; : : : ; xni 2 Œ�1; 1�n W 9w 2
Œ�1; 1�m

Vn
iD1 F.xi ; w/ D 0g:

Let us first consider the case indim.X / D 0, i.e., the case that X is finite. In fact, it is
sufficient to consider the case that X consists of a single set, X say, where X � Œ�1; 1�n and
dim.X/ � m < n.

R 5.11. – Indeed, it is obvious that, in general, if the conclusion of the quasi-
parameterization theorem holds for the families fXs W s 2 S1g and fXs W s 2 S2g, then it
also holds for the family fXs W s 2 S1 [ S2g.

Since we are now assuming that our ambient o-minimal structure is a reduct of Ran, we
may apply the 0-mild parameterization theorem (Proposition 1.5 of [15]) which tells us that
(after routine translation and scaling) there exists a finite set f ĵ W 1 � j � lg of definable,
real analytic maps ĵ D h�j;1; : : : ; �j;ni W .�3; 3/

m ! Rn (say) whose images on Œ�1; 1�m
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cover X , and are such that
j�
.˛/

j;i
.0/j

˛Š
� c � 3�j˛j for some constant c, and all ˛ 2 Nm,

j D 1; : : : ; l and i D 1; : : : ; n. If we now invoke our other assumption on the ambient
0-minimal structure, then (again, after translation and scaling at the expense of increasing the
number of parameterizing functions) there is no harm in assuming that each function �j:i has
a definable, complex extension (for which we use the same notation) to the polydisk �.2/m.

We now set

F.x;w/ WD

lY
jD1

nY
iD1

.x � �j;i .w//

for x 2 �.2/, w 2 �.2/m.
Then F is a monic polynomial of degree d D ln in its first variable. Further, fF g is, for

some K > 0, a .2;mC 1;K/-family which clearly has the required property (*).
We now proceed by induction on indim.X /. So consider some k;m; n 2 N with

k D indim.X / � 1 and m < n, and a definable family X D fXs W s 2 Sg of subsets
of Œ�1; 1�n with dim.Xs/ � m for each s 2 S , and assume that the theorem holds for families
of indim < k (for arbitrary m; n). Now it is easy to show that we may represent X in the
form fXu W u 2 Œ�1; 1�kg.

In order to apply the inductive hypothesis we define the family Y WD fYu0 W u
0 2 Œ�1; 1�k�1g

of subsets of Œ�1; 1�nC1 where, for each u0 2 Œ�1; 1�k�1,

(5.12) Yu0 WD fhx; uki 2 Œ�1; 1�
nC1
W x 2 Xug:

(In the course of this proof we shall use the convention that if v is a tuple whose length,
p say, is clear from the context, then v D hv1; : : : ; vpi, and v0 D hv1; : : : ; vp�1i. Also, by
convention, Œ�1; 1�0 WD f0g.)

Clearly indim.Y / < k and, for each u0 2 Œ�1; 1�k�1, dim.Yu0/ � m C 1 < n C 1, so
we may indeed apply our inductive hypothesis to Y and obtain some R > 1, K > 0, an
.R;mC 2;K/-family ƒ D fHt W t 2 T g, and a positive integer d such that

5.13. – Each Ht is a monic polynomial of degree at most d in its first variable, and

5.14. – For each u0 2 Œ�1; 1�k�1 there exists t D t .u0/ 2 T such that Yu0 � fhx; xnC1i 2
Œ�1; 1�nC1 W 9w 2 Œ�1; 1�mC1 such that

VnC1
iD1 Ht .xi ; w/ D 0g:

In order to prepare the functions in ƒ as discussed above, we must first remove those t
from T such that for some z1 the functionHt .z1; �/ vanishes identically (in its lastmC 1 vari-
ables). To do this, we first note that, by the principle of definable choice, the correspondence
u0 7! t .u0/ (for u0 2 Œ�1; 1�k�1) may be taken to be a definable function and so the set
E WD fu 2 Œ�1; 1�k W Ht.u0/.uk ; 0/ D 0g is definable (where 0 is the origin of RmC1). We have
dim.E/ < k because ifE contained a non-empty open subset of Œ�1; 1�k , then we could find
some u0 2 Œ�1; 1�k�1 such that Ht.u0/.uk ; 0/ D 0 for all uk lying in some non-empty open
interval, which is impossible as Ht.u0/.�; 0/ is a monic polynomial.

Thus, by another use of the inductive hypothesis, the family fXu W u 2 Eg satisfies the
conclusion of the quasi-parameterization theorem and so, by 5.11, it is sufficient to consider
the family fXu W u 2 Œ�1; 1�k nEg.

For this we define, for each u 2 Œ�1; 1�k nE, the function H�u W �.R/
mC1 ! C by

(5.15) H�u .z/ WD Ht.u0/.uk ; z/;
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so that for all u 2 Œ�1; 1�k nE, H�u .0/ ¤ 0. Now set

(5.16) ƒ0 WD fH
�
u W u 2 Œ�1; 1�

k
nEg:

Thenƒ0 is an .R;mC 1;K/-family which does not contain the zero function. So we may
apply 5.8 to it with, say, R0 D 1CR

2
(and mC 1 in place of m) and obtain, for some K0 > 0,

an .R0; mC 1;K0/-family ƒ�0 D fGt W t 2 T
�
0 g having properties 5.8.1-4.

I claim that

5.17. – For all u 2 Œ�1; 1�k nE, there exists t� 2 T �0 such that

Xu � fx 2 Œ�1; 1�
n
W 9w 2 Œ�1; 1�mC1.

n̂

iD1

Ht.u0/.xi ; w/ D 0 ^Gt�.w/ D 0/g:

Indeed, let u 2 Œ�1; 1�k n E. By 5.8.2, there is some t� 2 T �0 and A > 0 such that for all
z 2 �.R0/

mC1,

(5.17.1) Gt�.z/ D A �H
�
u .z/:

Now let x 2 Xu. Then, by 5.12, hx; uki 2 Yu0 . Hence, by 5.14, we may choose w 2 Œ�1; 1�mC1

such that Ht.u0/.xi ; w/ D 0 for i D 1; : : : ; n and Ht.u0/.uk ; w/ D 0. Since Œ�1; 1�mC1 �
�.R0/

mC1, 5.17 now follows from 5.17.1 and 5.15.
In order to complete the proof we must reduce the range of the w-variable in 5.17

from Œ�1; 1�mC1 to Œ�1; 1�m. The idea is simple: we use the relation Gt�.w/ D 0 to express
wmC1 as a function of w1; : : : ; wm, and then substitute this function for wmC1 in the first
conjunct appearing in 5.17. Of course, there are some technical difficulties to be overcome.
Firstly, we must ensure that Gt�.w/ really does depend on wmC1 and this is achieved by the
transformation described in 5.9. Secondly, the argument only works locally. However, the
compactness of T �0 will guarantee that this is sufficient. And finally, the functional depen-
dence of wmC1 on w1; : : : ; wm will, in general, be a many-valued one. This is precisely why
we only obtain quasi-parameterization rather than parameterization.

So, to carry out the first step, we apply 5.9 to the .R0; mC 1;K0/-family ƒ�0 D fGt W t 2 T
�
0 g

(which is permissible as it satisfies 5.8.4) with R0 D 1C 2.R0�1/
3

and R00 D 1C .R0�1/
3

(and

mC 1 in place of m). Let � W CmC1 ! CmC1 be as in 5.9 and, for each t 2 T �0 set

(5.18) QGt WD Gt ı � � �.R0/mC1:

Then f QGt W t 2 T
�
0 g is an .R0; m C 1;K0/-family. Further, since the family ƒ�0 is well

indexed (5.8.1), it immediately follows (from 5.5 and the Cauchy inequalities) that for each
˛ 2 NmC1, the function G.˛/t .z/ is continuous in both t and z, for ht; zi 2 T �0 ��.R0/

mC1 .
Since � is holomorphic throughout CmC1 we obtain

5.19. – For each ˛ 2 NmC1, the function QG.˛/t .z/ is continuous in both t and z for
ht; zi 2 T

�
0 ��.R

0/mC1.

Also, it follows from 5.9.3 that

5.20. – For all t 2 T �0 and all z0 2 �.R0/m, the function QGt .z0; �/ does not vanish identically
on �.R0/.
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Having modified the functions Gt , we must now adjust the functions Ht.u0/ in order to
preserve 5.17. Accordingly, we define, for each u 2 Œ�1; 1�k nE, the function QHu W �.R0/mC2 ! C
(which, in fact, only depends on u0) by

(5.21) QHu.z1; z2; : : : ; zmC2/ WD Ht.u0/.z1; �.z2; : : : ; zmC2//:

Then f QHu W u 2 Œ�1; 1�k n Eg is an .R0; m C 2;K/-family and, as we show below, the
following version of 5.17 holds.

5.22. – For all u 2 Œ�1; 1�k nE, there exists t� 2 T �0 such that

Xu � fx 2 Œ�1; 1�
n
W 9v 2 .�R00; R00/mC1.

n̂

iD1

QHu.xi ; v/ D 0 ^ QGt�.v/ D 0/g:

Indeed, let u D hu0; uki 2 Œ�1; 1�k n E and choose t� 2 T �0 as in 5.17. Suppose x 2 Xu
and (by 5.17) choose w 2 Œ�1; 1�mC1 such that

Vn
iD1Ht.u0/.xi ; w/ D 0 ^Gt�.w/ D 0.

Let v D ��1.w/. Then by 5.9.2, v 2 �.R00/mC1. But all the coordinates of v are
real, so v 2 .�R00; R00/mC1. Also, for i D 1; : : : ; n we have, by 5.21, that QHu.xi ; v/ D
Ht.u0/.xi ; �.v// D Ht.u0/.xi ; w/ D 0. Similarly, by 5.18, QGt�.v/ D Gt�.w/ D 0 and 5.22
follows.

Let us also record here the fact that in view of 5.13, and since the transformation 5.21 does
not affect the variable z1, we have

5.23. – For each u 2 Œ�1; 1�k n E, the function QHu is a monic polynomial of degree at most
d in its first variable.

We now carry out the local argument, as sketched above, that expresses zmC1 as a many-
valued function of z0 D hz1; : : : ; zmi via the relation QGt�.z

0; zmC1/ D 0.

First, fix some R1 with R00 < R1 < R0 and for each r with R00 < r < R1 let Cr be the
circle in C with center 0 and radius r . Consider the set

(5.24) Vr WD fht; z
0
i 2 T

�
0 ��.R1/

m
W for all zmC1 2 Cr ; QGt .z0; zmC1/ ¤ 0g:

It follows from 5.19 that Vr is an open subset of T �0 ��.R1/
m

(for the k�k-metric inherited
from CNCm, where N is as in 5.8.1). Further, it follows easily from 5.20 that the collection
fVr W R

00 < r < R1g covers the compact space T �0 ��.R1/
m

.

Now, by the Lebesgue Covering Lemma, there exists " > 0, a positive integer M , and
points t .1/; : : : ; t .M/ 2 T

�
0 , a.1/; : : : ; a.M/ 2 Œ�R00; R00�m such that

5.25. – The collection ft .h/ C�."/N W h D 1; : : : ;M g covers T �0 .

5.26. – Each set a.j / C�.2"/m is contained in �.R1/m and the collection fa.j / C .�"; "/m W
j D 1; : : : ;M g covers Œ�R00; R00�m, and

5.27. – For each h; j D 1; : : : ;M , there exists rh;j 2 .R00; R1/ such that

.ht .h/; a.j /i C�.2"/
NCm

/ \ .T
�
0 ��.R1/

m/ � Vrh;j :
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Fix, for the moment, h; j 2 f1; : : : ;M g. Then for each t 2 T �0 \ .t
.h/C�.2"/N / and each

z0 2 a.j / C�.2"/m it follows from 5.26, 5.27 and 5.24 that the contour integral

(��)
1

2� i

Z
Crh;j

@ QGt

@zmC1
.z0; zmC1/ � . QGt .z

0; zmC1//
�1 dzmC1

is well defined. It counts the number of zeros (with multiplicity) of the function QGt .z0; �/
lying within the circle Crh;j . Further, by 5.19, 5.24 and 5.27, the integral is a continuous
function of ht; z0i in the stated domain, and so is constant there. Let its value be qh;j and
let Z.t; z0/ D h�1.t; z0/; : : : ; �qh;j .t; z

0/i be a listing of the zeros of QGt .z0; �/ lying within the
circle Crh;j (each one counted according to its multiplicity).

Now, for t 2 T �0 \ .t
.h/C�.2"/N /, hz2; : : : ; zmC1i 2 a.j /C�.2"/m, u 2 Œ�1; 1�k nE, and

each l D 1; : : : ; qh;j , we have, by 5.26 and the fact that rh;j < R1, that

z2; : : : ; zmC1; �l .t; z2; : : : ; zmC1/ 2 �.R1/

and hence that the function

L
h;j
t;u W C � .a.j / C�.2"/m/! C

given by

(5.28) L
h;j
t;u .z1; z2; : : : ; zmC1/ WD

qh;jY
lD1

QHu.z1; z2; : : : ; zmC1; �l .t; z2; : : : ; zmC1//

is a monic polynomial of degree at most d � qh;j in z1 (by 5.23). Note that it is well-defined
since QHu has domain C ��.R0/mC1 and R1 < R0. (It is certainly possible that qk;j D 0, in
which case we intepret the empty product as 1 and the unique monic polynomial of degree 0
as the constant function 1.)

Now, since Lh;jt;u .z1; z2; : : : ; zmC1/ is symmetric in the �l .t; z2; : : : ; zmC1/ (i.e., it does not
depend on our particular ordering of the list Z.t; z2; : : : ; zmC1/), it follows easily that it is
a definable function of all the variables t; u; z1; : : : ; zmC1 (restricted to the stated domain)
and, as a standard argument shows, it is holomorphic in z1; z2; : : : ; zmC1. (Here one uses the
generalization of (**) giving the integral representation of sums of powers of functions of the
roots of QGt .z0; �/. Arbitrary symmetric polynomial combinations of such functions are then
given as polynomials in these power sums.)

We now scale and translate the function Lh;jt;u by setting

(5.29) P
h;j
t;u .z1; z2; : : : ; zmC1/ WD L

h;j
t;u .z1; a

.j /
1 C "z2; : : : ; a

.j /
m C "zmC1/

so that each P h;jt;u maps C � �.2/m to C, is a monic polynomial of degree at most dqh;j
in z1, and is bounded by Kqh;j . (Notice that this holds true, by our convention concerning
the monic polynomial of degree 0, even if qh;j D 0.)

We now combine the functions P h;jt;u as h and j vary over f1; : : : ;M g. Firstly, for h 2

f1; : : : ;M g, u 2 Œ�1; 1�k nE and t 2 T �0 \ .t
.h/ C�.2"/N / define

(5.30) P ht;u WD

MY
jD1

P
h;j
t;u
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so that each P ht;u maps C � �.2/m to C, is a monic polynomial of degree at most dh WDPM
jD1 dqh;j in z1, and is bounded by .K C 1/Mqh , where qh WD maxfqh;j W j D 1; : : : ;M g.
Finally, we set

(5.31) ƒ� WD

M[
hD1

fP ht;u W u 2 Œ�1; 1�
k ; t 2 T

�
0 \ .t

.h/
C�."/N /g:

Then ƒ� is a .2;m C 1; .K C 1/Mq/-family, where q WD maxfqh W h D 1; : : : ;M g, each
element of which is a monic polynomial of degree at most maxfdh W h D 1; : : : ;M g in its first
variable.

We now verify (*) (stated just before 5.11) which will complete the proof. We have to show
that ifu 2 Œ�1; 1�knE, then there existsF 2 ƒ� such thatXu � fx 2 Œ�1; 1�n W 9w 2 Œ�1; 1�mVn
iD1 F.xi ; w/ D 0g:

So let such a u be given. Choose t� 2 T �0 as in 5.22. By 5.25 we may choose h 2 f1; : : : ;M g
such that t� 2 t .h/ C �."/N . We let our F be the function P h

t�;u
(see 5.30), which of

course lies in ƒ� (see 5.31). Now pick any x D hx1; : : : ; xni 2 Xu. By 5.22 we may pick
v D hv0; vmC1i 2 .�R

00; R00/mC1 such that
Vn
iD1
QHu.xi ; v/ D 0^ QGt�.v/ D 0. By 5.26, there

exists j 2 f1; : : : ;M g such that v0 2 a.j / C .�"; "/m. Now, since vmC1 lies within the circle
Crh;j and is a zero of the function QGt�.v

0; �/ D 0, it follows that qh;j > 0 and that for some
l D 1; : : : ; qi;j , we have vmC1 D �l .t

�; v0/. Thus
Vn
iD1
QHu.xi ; v

0; �l .t
�; v0// D 0, and henceVn

iD1L
h;j

t�;u
.xi ; v

0/ D 0 (see 5.28). We now choose w 2 Œ�1; 1�m such that v0 D a.j / C "w.

Then
Vn
iD1 P

h;j

t�;u
.xi ; w/ D 0 (see 5.29). It follows that

Vn
iD1 P

h
t�;u

.xi ; w/ D 0 (see 5.30), i.e.,Vn
iD1 F.xi ; w/ D 0, and we are done.
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